
CS3410: Computer Systems and Organization
LEC12: Review + RISC-V Calling Convention (Wednesday)

Professor Giulia Guidi

Monday, October 6, 2025

1

Credits: Bala, Bracy, Garcia, Guidi, Kao, Sampson, Sirer, Weatherspoon

Plan for Today

• Review: Control Flow, Logical Instruction (self study), and Memory

• RISC-V Calling Convention (Wednesday)

2

Review of RISC-V control flow

3

Computer Decisions Making

4

I.e., based on computation, do something different
• In programming languages, if-statement

RISC-V if-statement instruction:

beq rs1, rs2, .label

bne rs1, rs2, label
“branch if not equal”

→ If rs1 != rs2, then go to the instruction at label

“branch if equal”

→ If rs1 == rs2, then go to the instruction at label

It marks the address of an
instruction

Review lecture 11 by Prof. Guidi and notes on the course website

https://www.cs.cornell.edu/courses/cs3410/2025fa/notes/riscv-mem_ctrl.html#control-flow-in-assembly

Types of Branches

5

• Branch: change of control flow

• Conditional branch: change control flow depending on outcome of
comparison

beq, bne

blt, bge

bltu, bgeu

→ beq, bne, blt, etc. do not update any register in the register file
→ Branches only affect program counter (PC)

“branch if less than”, “branch if greater or equal than”

“branch if less than” unsigned, “branch if greater than or equal to” unsigned

Review lecture 11 by Prof. Guidi and notes on the course website

https://www.cs.cornell.edu/courses/cs3410/2025fa/notes/riscv-mem_ctrl.html#control-flow-in-assembly

Types of Branches

6

• Branch: change of control flow

• Unconditional branch: always branch

jump (j)

• Conditional branch: change control flow depending on outcome of
comparison

beq, bne

blt, bge

bltu, bgeu

“branch if less than”, “branch if greater or equal than”

“branch if less than” unsigned, “branch if greater than or equal to” unsigned

j label == beq x0, x0, label

Review lecture 11 by Prof. Guidi and notes on the course website

https://www.cs.cornell.edu/courses/cs3410/2025fa/notes/riscv-mem_ctrl.html#control-flow-in-assembly

Example if Statement

7

Let us assume the translations below, compile if block

f → x10, g → x11, h → x12, i → x13, j → x14

if (i == j)
f = g + h;

bne x13, x14, Exit
add x10, x11, x12
Exit: % terminate

Review lecture 11 by Prof. Guidi and notes on the course website

https://www.cs.cornell.edu/courses/cs3410/2025fa/notes/riscv-mem_ctrl.html#control-flow-in-assembly

Example if-else Statement

8

Let us assume the translations below, compile if-else block

if (i == j)
f = g + h;

else
f = g - h;

bne x13, x14, Else
add x10, x11, x12
j Exit
Else: sub x10, x11, x12
Exit: % terminate

f → x10, g → x11, h → x12, i → x13, j → x14

Review lecture 11 by Prof. Guidi and notes on the course website

https://www.cs.cornell.edu/courses/cs3410/2025fa/notes/riscv-mem_ctrl.html#control-flow-in-assembly

Loops in C and Assembly

9

3 types of loops:
• while
• do … while

• for

Each can be rewritten as either of the other two!

int main() {
 int i = 0;
 while (i < 10) {
 printf("%d\n", i);
 i++;
 }
 return 0;
}

int main() {
 for (int i = 0; i < 10; i++) {
 printf("%d\n", i);
 }
 return 0;
}

int main() {
 int i = 0;
 do {
 printf("%d\n", i);
 i++;
 } while (i < 10);
 return 0;
}

Review lecture 11 by Prof. Guidi and notes on the course website

https://www.cs.cornell.edu/courses/cs3410/2025fa/notes/riscv-mem_ctrl.html#control-flow-in-assembly

Loops in C and Assembly

10

int A[20];
// fill A with data
int sum = 0;
for (int i = 0; i < 20; i++)
 sum += A[i];

Review lecture 11 by Prof. Guidi and notes on the course website

https://www.cs.cornell.edu/courses/cs3410/2025fa/notes/riscv-mem_ctrl.html#control-flow-in-assembly

Loops in C and Assembly

11

 add x9, x8, x0 # x9 = &A[0]
 add x10, x0, x0 # sum = 0
 add x11, x0, x0 # i = 0
 addi x13, x0, 20 # x13 = 20
Loop:
 bge x11, x13, Done
 lw x12, 0(x9) # x12 = A[i]
 add x10, x10, x12 # sum += x12
 addi x9, x9, 4 # &A[i+1]
 addi x11, x11, 1 # i++
 j Loop
Done:

int A[20];
// fill A with data
int sum = 0;
for (int i = 0; i < 20; i++)
 sum += A[i];

By using x9, x8 is unchanged—It’s useful if you need to reference the start of the array A again later

Review lecture 11 by Prof. Guidi and notes on the course website

https://www.cs.cornell.edu/courses/cs3410/2025fa/notes/riscv-mem_ctrl.html#control-flow-in-assembly

Loops in C and Assembly

12

 add x9, x8, x0 # x9 = &A[0]
 add x10, x0, x0 # sum = 0
 add x11, x0, x0 # i = 0
 addi x13, x0, 20 # x13 = 20
Loop:
 bge x11, x13, Done
 lw x12, 0(x9) # x12 = A[i]
 add x10, x10, x12 # sum += x12
 addi x9, x9, 4 # &A[i+1]
 addi x11, x11, 1 # i++
 j Loop
Done:

int A[20];
// fill A with data
int sum = 0;
for (int i = 0; i < 20; i++)
 sum += A[i];

By using x9, x8 is unchanged—It’s useful if you need to reference the start of the array A again later

Review lecture 11 by Prof. Guidi and notes on the course website

https://www.cs.cornell.edu/courses/cs3410/2025fa/notes/riscv-mem_ctrl.html#control-flow-in-assembly

Loops in C and Assembly

13

 add x9, x8, x0 # x9 = &A[0]
 add x10, x0, x0 # sum = 0
 add x11, x0, x0 # i = 0
 addi x13, x0, 20 # x13 = 20
Loop:
 bge x11, x13, Done
 lw x12, 0(x9) # x12 = A[i]
 add x10, x10, x12 # sum += x12
 addi x9, x9, 4 # &A[i+1]
 addi x11, x11, 1 # i++
 j Loop
Done:

int A[20];
// fill A with data
int sum = 0;
for (int i = 0; i < 20; i++)
 sum += A[i];

By using x9, x8 is unchanged—It’s useful if you need to reference the start of the array A again later

Review lecture 11 by Prof. Guidi and notes on the course website

https://www.cs.cornell.edu/courses/cs3410/2025fa/notes/riscv-mem_ctrl.html#control-flow-in-assembly

Loops in C and Assembly

14

 add x9, x8, x0 # x9 = &A[0]
 add x10, x0, x0 # sum = 0
 add x11, x0, x0 # i = 0
 addi x13, x0, 20 # x13 = 20
Loop:
 bge x11, x13, Done
 lw x12, 0(x9) # x12 = A[i]
 add x10, x10, x12 # sum += x12
 addi x9, x9, 4 # &A[i+1]
 addi x11, x11, 1 # i++
 j Loop
Done:

int A[20];
// fill A with data
int sum = 0;
for (int i = 0; i < 20; i++)
 sum += A[i];

By using x9, x8 is unchanged—It’s useful if you need to reference the start of the array A again later

Review lecture 11 by Prof. Guidi and notes on the course website

https://www.cs.cornell.edu/courses/cs3410/2025fa/notes/riscv-mem_ctrl.html#control-flow-in-assembly

Loops in C and Assembly

15

 add x9, x8, x0 # x9 = &A[0]
 add x10, x0, x0 # sum = 0
 add x11, x0, x0 # i = 0
 addi x13, x0, 20 # x13 = 20
Loop:
 bge x11, x13, Done
 lw x12, 0(x9) # x12 = A[i]
 add x10, x10, x12 # sum += x12
 addi x9, x9, 4 # &A[i+1]
 addi x11, x11, 1 # i++
 j Loop
Done:

int A[20];
// fill A with data
int sum = 0;
for (int i = 0; i < 20; i++)
 sum += A[i];

By using x9, x8 is unchanged—It’s useful if you need to reference the start of the array A again later

Review lecture 11 by Prof. Guidi and notes on the course website

https://www.cs.cornell.edu/courses/cs3410/2025fa/notes/riscv-mem_ctrl.html#control-flow-in-assembly

Loops in C and Assembly

16

 add x9, x8, x0 # x9 = &A[0]
 add x10, x0, x0 # sum = 0
 add x11, x0, x0 # i = 0
 addi x13, x0, 20 # x13 = 20
Loop:
 bge x11, x13, Done
 lw x12, 0(x9) # x12 = A[i]
 add x10, x10, x12 # sum += x12
 addi x9, x9, 4 # &A[i+1]
 addi x11, x11, 1 # i++
 j Loop
Done:

int A[20];
// fill A with data
int sum = 0;
for (int i = 0; i < 20; i++)
 sum += A[i];

You can only compare branches using registers—register to register, not e.g.,
branch less than immediate

By using x9, x8 is unchanged—It’s useful if you need to reference the start of the array A again later

Review lecture 11 by Prof. Guidi and notes on the course website

https://www.cs.cornell.edu/courses/cs3410/2025fa/notes/riscv-mem_ctrl.html#control-flow-in-assembly

Loops in C and Assembly

17

 add x9, x8, x0 # x9 = &A[0]
 add x10, x0, x0 # sum = 0
 add x11, x0, x0 # i = 0
 addi x13, x0, 20 # x13 = 20
Loop:
 bge x11, x13, Done
 lw x12, 0(x9) # x12 = A[i]
 add x10, x10, x12 # sum += x12
 addi x9, x9, 4 # &A[i+1]
 addi x11, x11, 1 # i++
 j Loop
Done:

int A[20];
// fill A with data
int sum = 0;
for (int i = 0; i < 20; i++)
 sum += A[i];

Ok, why bge and not blt?
If that test fails, you never enter the for loop—branches usually point to the exit, not the body

By using x9, x8 is unchanged—It’s useful if you need to reference the start of the array A again later

Review lecture 11 by Prof. Guidi and notes on the course website

https://www.cs.cornell.edu/courses/cs3410/2025fa/notes/riscv-mem_ctrl.html#control-flow-in-assembly

Loops in C and Assembly

18

 add x9, x8, x0 # x9 = &A[0]
 add x10, x0, x0 # sum = 0
 add x11, x0, x0 # i = 0
 addi x13, x0, 20 # x13 = 20
Loop:
 bge x11, x13, Done
 lw x12, 0(x9) # x12 = A[i]
 add x10, x10, x12 # sum += x12
 addi x9, x9, 4 # &A[i+1]
 addi x11, x11, 1 # i++
 j Loop
Done:

int A[20];
// fill A with data
int sum = 0;
for (int i = 0; i < 20; i++)
 sum += A[i];

By using x9, x8 is unchanged—It’s useful if you need to reference the start of the array A again later

Review lecture 11 by Prof. Guidi and notes on the course website

https://www.cs.cornell.edu/courses/cs3410/2025fa/notes/riscv-mem_ctrl.html#control-flow-in-assembly

Loops in C and Assembly

19

 add x9, x8, x0 # x9 = &A[0]
 add x10, x0, x0 # sum = 0
 add x11, x0, x0 # i = 0
 addi x13, x0, 20 # x13 = 20
Loop:
 bge x11, x13, Done
 lw x12, 0(x9) # x12 = A[i]
 add x10, x10, x12 # sum += x12
 addi x9, x9, 4 # &A[i+1]
 addi x11, x11, 1 # i++
 j Loop
Done:

int A[20];
// fill A with data
int sum = 0;
for (int i = 0; i < 20; i++)
 sum += A[i];

By using x9, x8 is unchanged—It’s useful if you need to reference the start of the array A again later

Review lecture 11 by Prof. Guidi and notes on the course website

https://www.cs.cornell.edu/courses/cs3410/2025fa/notes/riscv-mem_ctrl.html#control-flow-in-assembly

Loops in C and Assembly

20

 add x9, x8, x0 # x9 = &A[0]
 add x10, x0, x0 # sum = 0
 add x11, x0, x0 # i = 0
 addi x13, x0, 20 # x13 = 20
Loop:
 bge x11, x13, Done
 lw x12, 0(x9) # x12 = A[i]
 add x10, x10, x12 # sum += x12
 addi x9, x9, 4 # &A[i+1]
 addi x11, x11, 1 # i++
 j Loop
Done:

int A[20];
// fill A with data
int sum = 0;
for (int i = 0; i < 20; i++)
 sum += A[i];

By using x9, x8 is unchanged—It’s useful if you need to reference the start of the array A again later

Review lecture 11 by Prof. Guidi and notes on the course website

https://www.cs.cornell.edu/courses/cs3410/2025fa/notes/riscv-mem_ctrl.html#control-flow-in-assembly

Loops in C and Assembly

21

 add x9, x8, x0 # x9 = &A[0]
 add x10, x0, x0 # sum = 0
 add x11, x0, x0 # i = 0
 addi x13, x0, 20 # x13 = 20
Loop:
 bge x11, x13, Done
 lw x12, 0(x9) # x12 = A[i]
 add x10, x10, x12 # sum += x12
 addi x9, x9, 4 # &A[i+1]
 addi x11, x11, 1 # i++
 j Loop
Done:

int A[20];
// fill A with data
int sum = 0;
for (int i = 0; i < 20; i++)
 sum += A[i];

By using x9, x8 is unchanged—It’s useful if you need to reference the start of the array A again later

Review lecture 11 by Prof. Guidi and notes on the course website

https://www.cs.cornell.edu/courses/cs3410/2025fa/notes/riscv-mem_ctrl.html#control-flow-in-assembly

Loops in C and Assembly

22

 add x9, x8, x0 # x9 = &A[0]
 add x10, x0, x0 # sum = 0
 add x11, x0, x0 # i = 0
 addi x13, x0, 20 # x13 = 20
Loop:
 bge x11, x13, Done
 lw x12, 0(x9) # x12 = A[i]
 add x10, x10, x12 # sum += x12
 addi x9, x9, 4 # &A[i+1]
 addi x11, x11, 1 # i++
 j Loop
Done:

int A[20];
// fill A with data
int sum = 0;
for (int i = 0; i < 20; i++)
 sum += A[i];

By using x9, x8 is unchanged—It’s useful if you need to reference the start of the array A again later

Review lecture 11 by Prof. Guidi and notes on the course website

https://www.cs.cornell.edu/courses/cs3410/2025fa/notes/riscv-mem_ctrl.html#control-flow-in-assembly

Loops in C and Assembly

23

 add x9, x8, x0 # x9 = &A[0]
 add x10, x0, x0 # sum = 0
 add x11, x0, x0 # i = 0
 addi x13, x0, 20 # x13 = 20
Loop:
 bge x11, x13, Done
 lw x12, 0(x9) # x12 = A[i]
 add x10, x10, x12 # sum += x12
 addi x9, x9, 4 # &A[i+1]
 addi x11, x11, 1 # i++
 j Loop
Done:

int A[20];
// fill A with data
int sum = 0;
for (int i = 0; i < 20; i++)
 sum += A[i];

E: Can you write this using blt instead of bge? If so, how
many conditional jumps and how many unconditional jumps?
Can you rewrite it to decrease i from 20 to 0?

By using x9, x8 is unchanged—It’s useful if you need to reference the start of the array A again later

Review lecture 11 by Prof. Guidi and notes on the course website

https://www.cs.cornell.edu/courses/cs3410/2025fa/notes/riscv-mem_ctrl.html#control-flow-in-assembly

blt Fall-Through

24

int A[20];
// fill A with data
int sum = 0;
for (int i = 0; i < 20; i++)
 sum += A[i];

Review lecture 11 by Prof. Guidi and notes on the course website

 add x9, x8, x0 # x9 = &A[0]
 add x10, x0, x0 # sum = 0
 add x11, x0, x0 # i = 0
 addi x13, x0, 20 # x13 = 20
Loop:
 lw x12, 0(x9) # x12 = A[i]
 add x10, x10, x12 # sum += x12
 addi x9, x9, 4 # &A[i+1]
 addi x11, x11, 1 # i++
 blt x11, x13, Loop# if (i < 20)
goto Loop
Done:

This fall-through approach works and uses only one conditional branch
in this example, but if the loop bound is zero—or, more generally, if the
code might never take the branch—it still executes the loop body once.
This is inefficient or even incorrect for large loops or performance-critical
code.

https://www.cs.cornell.edu/courses/cs3410/2025fa/notes/riscv-mem_ctrl.html#control-flow-in-assembly

Poll

25

Change the code to sum only the even-indexed elements of the array A:

 add x9, x8, x0 # x9 = &A[0]
 add x10, x0, x0 # sum = 0
 add x11, x0, x0 # i = 0
 addi x13, x0, 20 # x13 = 20
Loop:
 bge x11, x13, Done
 lw x12, 0(x9) # x12 = A[i]
 add x10, x10, x12 # sum += x12
 addi x9, x9, 4 # &A[i+1]
 addi x11, x11, 1 # i++
 j Loop
Done:

Review lecture 11 by Prof. Guidi and notes on the course website

https://www.cs.cornell.edu/courses/cs3410/2025fa/notes/riscv-mem_ctrl.html#control-flow-in-assembly

Ok, review (self study): logical instruction

26Review lecture 9 by Dr. Laeufer and notes on logical instructions

https://www.cs.cornell.edu/courses/cs3410/2025fa/notes/riscv.html#logical-operations-in-risc-v

RISC-V Logical Instruction

27

• Useful to operate on fields of bits within a word
- E.g., characters within a word (8 bits)

• Operations to pack/unpack bits into words
• Called logical operations

Logical Op C Op Java Op RISC-V Instruction

Bit-by-bit AND & & and

Bit-by-bit OR | | or

Bit-by-bit XOR ^ ^ xor

Left logical shift << << sll

Right logical shift >> >> srl

Does not have not

Review lecture 9 by Dr. Laeufer and notes on logical instructions

https://www.cs.cornell.edu/courses/cs3410/2025fa/notes/riscv.html#logical-operations-in-risc-v

RISC-V Logical Instruction

28

• Two variants
- Register: and x5, x6, x7 # x5 = x6 & x7

- Immediate: andi x5, x6, 3 # x5 = x6 & 3

and rd, rs1, rs2 meaning rd = rs1 & rs2

rs1 = 1101₂

rs2 = 1011₂

Bit position rs1 rs2 rs1 & rs2 rs1 | rs2 rs1 ^ rs2

3 (MSB) 1 1 1 1 0

2 1 0 0 0 1

1 0 1 0 0 1

0 (LSB) 1 1 1 1 0

Result (rd) 1001₂ 1111₂ 0110₂

Review lecture 9 by Dr. Laeufer and notes on logical instructions

https://www.cs.cornell.edu/courses/cs3410/2025fa/notes/riscv.html#logical-operations-in-risc-v

RISC-V Logical Instruction

29

• Two variants
- Register: and x5, x6, x7 # x5 = x6 & x7

• Used for “masks”

- Immediate: andi x5, x6, 3 # x5 = x6 & 3

- andi with 0000 00FFhex isolates the least significant byte

- andi with FF00 0000hex isolates the most significant byte

Review lecture 9 by Dr. Laeufer and notes on logical instructions

https://www.cs.cornell.edu/courses/cs3410/2025fa/notes/riscv.html#logical-operations-in-risc-v

RISC-V no NOT

30

• There’s no logical NOT in RISC-V
- Use xor with 11111111two

x y XOR(x, y)

0 0 0

0 1 1

1 0 1

1 1 0

In a circuit, think of x as the input signal

In a circuit, think of y as “Do you want to flip the value?”—0 means “I don’t want to flip the value” while 1 means “I want to flip the value”

XOR is a conditional inverter

Review lecture 9 by Dr. Laeufer and notes on logical instructions

https://www.cs.cornell.edu/courses/cs3410/2025fa/notes/riscv.html#logical-operations-in-risc-v

Ok, let’s review memory allocation and stack

31

32

The table summarizes where different types of variables live in memory, how long
they exist, and when they are automatically or manually released

The storage duration Declared in? The memory area The lifetime Freed when?

static global or static Data entire program program exit

automatic local variables Stack function entry → exit return

allocated via malloc Heap until free explicit free

If I call a function in C, where do its variables go?

Review lecture 5 by Dr. Laeufer and notes on the course website

https://www.cs.cornell.edu/courses/cs3410/2025fa/notes/mem.html

If I call a function in C, where do its variables go?

33

• local variables
• Grows downward on most architectures

(higher addresses → lower addresses)

• Grows upward (lower → higher addresses)
• Dynamically allocated by the runtime

(malloc or new)Global variables

Program instruction

The three regions — stack, heap, static — correspond directly to the three storage
durations

Review lecture 5 by Dr. Laeufer and notes on the course website

https://www.cs.cornell.edu/courses/cs3410/2025fa/notes/mem.html

Stack and Heap

34

#include <stdio.h>

void f(int x) {

 int y = 42;

 printf("f: x=%d, y=%d\n", x, y);

}

int main(void) {

 int a = 10;

 f(a);

 f(20);

}

#include <stdlib.h>

#include <stdio.h>

int main(void) {

 int *p = malloc(sizeof(int));

 *p = 5;

 printf("%d\n", *p);

 free(p);

}

In which memory area do the variables highlighted in bold live?

Code A: Code B:

Review lecture 5 by Dr. Laeufer and notes on the course website

https://www.cs.cornell.edu/courses/cs3410/2025fa/notes/mem.html

Stack and Heap

35

#include <stdio.h>

void f(int x) {

 int y = 42;

 printf("f: x=%d, y=%d\n", x, y);

}

int main(void) {

 int a = 10;

 f(a);

 f(20);

}

#include <stdlib.h>

#include <stdio.h>

int main(void) {

 int *p = malloc(sizeof(int));

 *p = 5;

 printf("%d\n", *p);

 free(p);

}

In which memory area do the variables highlighted in bold live?

Code A: Code B:

// stack

// stack
// *p pointee is on the heap

Review lecture 5 by Dr. Laeufer and notes on the course website

// p pointer is on the stack

https://www.cs.cornell.edu/courses/cs3410/2025fa/notes/mem.html

Stack and Heap

36

#include <stdio.h>

void f(int x) {

 int y = 42;

 printf("f: x=%d, y=%d\n", x, y);

}

int main(void) {

 int a = 10;

 f(a);

 f(20);

}

#include <stdlib.h>

#include <stdio.h>

int main(void) {

 int x = 5;

 int *p = &x;

 printf("%d\n", *p);

 free(p);

}

In which memory area do the variables highlighted in bold live?

Code A: Code C:

// stack

// stack
// *p pointee is on the stack

Review lecture 5 by Dr. Laeufer and notes on the course website

// p pointer is on the stack

https://www.cs.cornell.edu/courses/cs3410/2025fa/notes/mem.html

Poll

37

int *make_it(void) {

 int val = 7;

 return &val;

}

Q: spot the bug!

Code C:

PollEv.com /gguidi
Or send gguidi to 22333

https://pollev.com/gguidi

On to stack [not in the prelim]

38PS: this is needed for A7 + notes on the course website

Stack

39

#include <stdio.h>

void f(int x) {

 int y = 42;

 printf("f: x=%d, y=%d\n", x, y);

}

int main(void) {

 int a = 10;

 f(a);

 f(20);

}

Code A:

// stack

// stack

<- Top
(lower addresses)

(higher addresses)

A stack is like a vertical stack of boxes: You add (push) boxes on top and take (pop)
boxes from the top

Review lecture 5 by Dr. Laeufer and notes on the course website

https://www.cs.cornell.edu/courses/cs3410/2025fa/notes/mem.html

Stack

40

#include <stdio.h>

void f(int x) {

 int y = 42;

 printf("f: x=%d, y=%d\n", x, y);

}

int main(void) {

 int a = 10;

 f(a);

 f(20);

}

Code A:

// stack

// stack

Before f():

| main frame: a = 10 |

|--------------------|

Once inside f(10):

| f frame: x = 10, y = 42 |

| main frame: a = 10 |

|-------------------------|

<- Top
(lower addresses)

(higher addresses)

This frame sits at e.g., 0x1000 + 4

Let us draw stack frames after each call:

Review lecture 5 by Dr. Laeufer and notes on the course website

https://www.cs.cornell.edu/courses/cs3410/2025fa/notes/mem.html

Stack

41

Let us draw stack frames after each call:

#include <stdio.h>

void f(int x) {

 int y = 42;

 printf("f: x=%d, y=%d\n", x, y);

}

int main(void) {

 int a = 10;

 f(a);

 f(20);

}

Code A:

// stack

// stack

Before f():

| main frame: a = 10 |

|--------------------|

Once inside f(10):

| main frame: a = 10 |

| f frame: x = 10, y = 42 |

|-------------------------|

This frame sits at e.g., 0x1000 + 12

Review lecture 5 by Dr. Laeufer and notes on the course website

CPU pushes a new stack frame onto the stack

This frame sits at e.g., 0x1000 + 12

https://www.cs.cornell.edu/courses/cs3410/2025fa/notes/mem.html

Stack

42

Let us draw stack frames after each call:

#include <stdio.h>

void f(int x) {

 int y = 42;

 printf("f: x=%d, y=%d\n", x, y);

}

int main(void) {

 int a = 10;

 f(a);

 f(20);

}

Code A:

// stack

// stack

Before f():

| main frame: a = 10 |

|--------------------|

Once inside f(10):

| main frame: a = 10 |

| f frame: x = 10, y = 42 |

|-------------------------|

This frame sits at e.g., 0x1000 + 12

Review lecture 5 by Dr. Laeufer and notes on the course website

This frame sits at e.g., 0x1000 + 12

This frame sits at e.g., 0x1000 + 8

https://www.cs.cornell.edu/courses/cs3410/2025fa/notes/mem.html

43

int main() {
 uint8_t a = 0; // 1 byte
 uint8_t b = 1; // 1 byte
 uint8_t *p = &a; // pointer (4 bytes on 32-bit or 8 bytes on 64-bit)
}

PS: This is the same example Dr. Laeufer used in Lecture 5

1. Push a onto the stack

address | variable | value

0x… + 12 | a | 0
0x… + 8 | |
0x… + 4 | |

Ex: Stack

44

int main() {
 uint8_t a = 0; // 1 byte
 uint8_t b = 1; // 1 byte
 uint8_t *p = &a; // pointer (4 bytes on 32-bit or 8 bytes on 64-bit)
}

PS: This is the same example Dr. Laeufer used in Lecture 5

1. Push b onto the stack

address | variable | value

0x… + 12 | a | 0
0x… + 8 | b | 1
0x… + 4 | p | points to `a`

Ex: Stack

45

int main() {
 uint8_t a = 0; // 1 byte
 uint8_t b = 1; // 1 byte
 uint8_t *p = &a; // pointer (4 bytes on 32-bit or 8 bytes on 64-bit)
}

PS: This is the same example Dr. Laeufer used in Lecture 5

1. Push p onto the stack

address | variable | value

0x… + 12 | a | 0
0x… + 8 | b | 1
0x… + 4 | p | points to `a`

Ex: Stack

46PS: This is the same example Dr. Laeufer used in Lecture 5

1. Push p onto the stack

address | variable | value

0x… + 12 | a | 0
0x… + 8 | b | 1
0x… + 4 | p | points to `a`

Ex: Stack

• a and b are 1 byte each, but compilers usually align variables to 4 bytes, so each may
take 4 bytes

• p is a pointer, so it’s 4 bytes on 32-bit or 8 bytes on 64-bit

On to calling convention [not in the prelim]

47PS: this is needed for A7 + notes on the course website

Purpose of Calling Convention

48

A calling convention is a set of rules that defines how functions communicate:

- E.g., how arguments are passed

- E.g., how return values are returned

- E.g., how registers and the stack are managed

- E.g., who is responsible for saving/restoring what

The essentially the “contract” between the caller (e.g., main) and callee, e.g.,
function f()

RISC-V Calling Convention

49

Caller-saved: Caller must save if it wants the value after the call

Callee-saved: Callee must preserve them across the call

Register Use

x1 → ra The return address

x2 → sp The stack pointer

x5–x7 → t0–t2 The temporary registers (caller-saved)

x10–x17 → a0–a7 The function arguments and return values (a0-a1 only)

x8–x9 → s0–s1 The saved registers (callee-saved)

A calling convention is a set of rules that defines how functions communicate:

RISC-V Calling Convention

50

Caller-saved: Caller must save if it wants the value after the call

Callee-saved: Callee must preserve them across the call

Register Use

x1 → ra The return address

x2 → sp The stack pointer

x5–x7 → t0–t2 The temporary registers (caller-saved)

x10–x17 → a0–a7 The function arguments and return values (a0-a1 only)

x8–x9 → s0–s1 The saved registers (callee-saved)

A calling convention is a set of rules that defines how functions communicate:

If main calls a function add, ra stores the address of the instruction following the call to add in main

sp stores the address in memory of the top of the stack

The subroutine can modify these values

RISC-V Calling Convention

51

Register Use

x1 → ra The return address

x2 → sp The stack pointer

x5–x7 → t0–t2 The temporary registers (caller-saved)

x10–x17 → a0–a7 The function arguments and return values (a0-a1 only)

x8–x9 → s0–s1 The saved registers (callee-saved)

I have 8 registers for the arguments. But what happens if my function has 10 arguments?

RISC-V Calling Convention

52

The first 8 integer arguments → a0-a7

Remaining arguments → pushed onto the stack

Register Use

x1 → ra The return address

x2 → sp The stack pointer

x5–x7 → t0–t2 The temporary registers (caller-saved)

x10–x17 → a0–a7 The function arguments and return values (a0-a1 only)

x8–x9 → s0–s1 The saved registers (callee-saved)

I have 8 registers for the arguments. But what happens if my function has 10 arguments?

RISC-V Calling Convention

53

Caller-saved: Caller must save if it wants the value after the call

Callee-saved: Callee must preserve them across the call

Register Use

x1 → ra The return address

x2 → sp The stack pointer

x5–x7 → t0–t2 The temporary registers (caller-saved)

x10–x17 → a0–a7 The function arguments and return values (a0-a1 only)

x8–x9 → s0–s1 The saved registers (callee-saved)

A calling convention is a set of rules that defines how functions communicate:

If main calls a function add, ra stores the address of the instruction following the call to add in main

sp stores the address in memory of the top of the stack

The subroutine e.g., add can touch these values, but it must restore them

The subroutine can modify these values

