
CS3410: Computer Systems and Organization
LEC11: RISC-V Data Transfer + Control Flow

Professor Giulia Guidi

Wednesday, October 1, 2025

1

Credits: Bala, Bracy, Garcia, Guidi, Kao, Sampson, Sirer, Weatherspoon

Plan for Today

• Review: RISC-V Data Transfer — Vol. I

• RISC-V Data Transfer — Vol. II

• RISC-V Control Flow or Decision Making

2

PSA: Prelim & Prelim Survey [due Friday 10/3]
Please go to OH or post on Ed

Review of RISC-V data transfer, so far

3

4

RISC-V Assembly

High Level Language Program
(e.g. C)

temp = v[k];
v[k] = v[k+1];

Assembly Language Program
(e.g., RISC-V)

Compiler
lw x13, 0(x12) # temp = v[k]
lw x14, 4(x12) # x14 = v[k+1]
sw x14, 0(x12) # v[k] = v[k+1]

Machine Language Program
(e.g., RISC-V)

Assembler
0000 0000 0000 0110 0010 0110 1000 0011
0000 0000 0100 0110 0010 0111 0000 0011
0000 0000 1110 0110 0010 0000 0010 0011

Hardware Architecture
Description (e.g., block diagram)

Hardware

Logic Circuit Description
(e.g., circuit schematic diagram)

5https://www.cs.cornell.edu/courses/cs3410/2025sp/notes/cpu_stages.html

Data Transfer: Load from and Store to Memory

Load from

Store to

Load from Memory to Register

6

Using “load word” (lw) in RISC-V:

lw x10, 12(x15) # Reg x10 gets A[3]
add x11, x12, x10 # g = h + A[3]

1 word = 4 bytes

→ lw updates x10 in the register file

int A[100];
g = h + A[3];

C code:

x15: address in memory (pointer to A[0])
12: offset in bytes but we load one word at a time

address value (hex)

------- -----------

 1000 0x03 (LSB)

 1001 0x87

 1002 0xC7

 1003 0x00 (MSB) <- 1 word (bytes 1000–1003)

 1004 0x33 (LSB)

 1005 0x06

 1006 0xA6

 1007 0x00 (MSB) <- 1 word (bytes 1004–1007)

Load from Memory to Register

7

→ lw updates x10 in the register file

In this example, we assumed we knew x15 was the base address of A[0]
Code (or compiler) must have loaded the base address into x15

Using “load word” (lw) in RISC-V:

lw x10, 12(x15) # Reg x10 gets A[3]
add x11, x12, x10 # g = h + A[3]

1 word = 4 bytes

la x15, A # x15 = &A[0] (address of first element)

x15: address in memory (pointer to A[0])
12: offset in bytes but we load one word at a time

Load from Memory to Register

8

la rd, imm → lui rd, imm # put 20-bit imm into the top 20 bit of rd

In this example, we assumed we knew x15 was the base address of A[0]
Code (or compiler) must have loaded the base address into x15

Using “load word” (lw) in RISC-V:

lw x10, 12(x15) # Reg x10 gets A[3]
add x11, x12, x10 # g = h + A[3]

1 word = 4 bytes

la x15, A # x15 = &A[0]

la rd, imm → addi rd, rs1, imm # put 12-bit imm into the low 12 bit of rd

Using “store word” (sw) in RISC-V:

Store from Register to Memory

9

Store to (Data flow)

x15 + 12

x15 + 40
Offset must be a multiple of 4

1 word = 4 bytes

C code:

int A[100];
A[10] = h + A[3];

lw x10, 12(x15) # Temp reg x10 gets A[3]
add x11, x12, x10 # Temp reg x11 gets h + A[3]
sw x11, 40(x15) # A[10] = h + A[3]

10

CPU 5 Stages in RISC-V

Instruction FETCH DECODE EXECUTE MEMORY WRITEBACK

 add rd, rs1, rs2

 beq ✓ ✓ ✓

 sw ✓ ✓ ✓ ✓

 lw ✓ ✓ ✓ ✓ ✓
The instruction is fetched

from the instruction memory

✔

The registers rs1 and rs2 read,
control signals set

✔

ALU adds rs1 + rs2

✔

Don’t need it, no memory
access

ALU result written back to the
destination register rd

✔

Poll

11

PollEv.com /gguidi
Or send gguidi to 22333

Q: Please select the CPU stage not involved in the operation: sw x10, 36(x5)

https://pollev.com/gguidi

12

CPU 5 Stages in RISC-V

Instruction FETCH DECODE EXECUTE MEMORY WRITEBACK

 sw rs2, offse(rs1)

 beq ✓ ✓ ✓

 sw ✓ ✓ ✓ ✓

 lw ✓ ✓ ✓ ✓ ✓

ALU computes effective address =
rs1 base + offset

✔

The instruction is fetched
from the instruction memory

✔

Data memory accessed,
rs2 value stored

✔

There’s nothing to write back
into registers

✔

Decode instruction, read register
rs2, rs1, extract the offset

13

CPU 5 Stages in RISC-V

Instruction FETCH DECODE EXECUTE MEMORY WRITEBACK

 lw rd, offset(rs1)

 beq ✓ ✓ ✓

 sw ✓ ✓ ✓ ✓

 lw ✓ ✓ ✓ ✓ ✓

ALU computes effective address =
rs1 base + offset

✔

The loaded value is written
back into destination register

rd

✔

The instruction is fetched
from the instruction memory

✔

Data memory accessed,
value loaded

✔✔

Decode instruction, read register
rs1, extract the offset (imm)

Ok, back to data transfer — Vol. II

14

Loading and Storing Bytes

15

In addition to lw and sw, RISC-V has lb and sb “store byte”

“load byte”“store word”“load word”

Loading and Storing Bytes

16

In addition to lw and sw, RISC-V has lb and sb

Uses same format as lw and sw:

• E.g., lb x10, 3(x11)

“store byte”

“load byte”

pointer to memory

offset in bytes (doesn’t have to be a multiple of 4 because I’m only loading 1 byte, i.e., one line in memory)

1. Compute the effective address = content of x11 + 3
• Let us assume 3(x11) contains the value 4 (decimal) and we use 16-bit register

• 4 (decimal) = 0000 0000 0000 0100 (16-bit binary)

“store word”“load word”

Loading and Storing Bytes

17

In addition to lw and sw, RISC-V has lb and sb

Uses same format as lw and sw:

• E.g., lb x10, 3(x11)

“store byte”

“load byte”

pointer to memory

offset in bytes (doesn’t have to be a multiple of 4 because I’m only loading 1 byte, i.e., one line in memory)

1. Compute the effective address = content of x11 + 3
• Let us assume 3(x11) contains the value 4 (decimal) and we use 16-bit register

• 4 (decimal) = 0000 0000 0000 0100 (16-bit binary)

• The loaded byte is 0000 0100 (8-bit binary)
2. Then, load 1 byte from memory at that address

“store word”“load word”

Loading and Storing Bytes

18

In addition to lw and sw, RISC-V has lb and sb

Uses same format as lw and sw:

• E.g., lb x10, 3(x11)

“store byte”

“load byte”

pointer to memory

offset in bytes (doesn’t have to be a multiple of 4 because I’m only loading 1 byte, i.e., one line in memory)

• The loaded byte is 0000 0100 (8-bit binary)
2. Then, load 1 byte from memory at that address

• The final value in x10 is 0000 0000 0000 0100 (16-bit binary) = 4 (decimal)
3. Finally, sign-extend the byte to 16 bits (we assumed x10 is a 16-bit register)

“store word”“load word”

Loading and Storing Bytes

19

In addition to lw and sw, RISC-V has lb and sb

Uses same format as lw and sw:

• E.g., lb x10, 3(x11)

“store byte”

“load byte”

pointer to memory

offset in bytes (doesn’t have to be multiple of 4)

1. Compute the effective address = content of x11 + 3
• Ok but what if 3(x11) contains the value 3410 (decimal) and we use 16-bit register

• 3410 (decimal) = 0000 1101 0101 0010 (16-bit binary)

• The loaded byte is 0101 0010 (8-bit binary)
2. Then, load 1 byte from memory at that address

“store word”“load word”

Loading and Storing Bytes

20

In addition to lw and sw, RISC-V has lb and sb

Uses same format as lw and sw:

• E.g., lb x10, 3(x11)

“store byte”

“load byte”

pointer to memory

offset in bytes (doesn’t have to be multiple of 4)

• The loaded byte is 0101 0010 (8-bit binary)
2. Then, load 1 byte from memory at that address

• The final value in x10 is 0000 0000 0101 0010 (16-bit binary)
3. Finally, sign-extend the byte to 16 bits (we assumed x10 is a 16-bit register)

• Ops! 0000 0000 0101 0010 (16-bit binary) = 82 (decimal) != 3410 (decimal)

“store word”“load word”

lbu

21

In addition to lw and sw, RISC-V has lb and sb

lbu = unsigned load byte It doesn’t need to preserve the sign

Uses same format as lw and sw:

• E.g., lb x10, 3(x11)pointer to memory

offset in bytes (doesn’t have to be multiple of 4)

“store word”“load word”

“store byte”

“load byte”

lbu

22

In addition to lw and sw, RISC-V has lb and sb

lbu = unsigned load byte

But no sbu, why?

It doesn’t need to preserve the sign: zero extension

It doesn’t matter! You’re just writing the low 8 bits of a register
directly to memory, so no extension

Uses same format as lw and sw:

• E.g., lb x10, 3(x11)pointer to memory

offset in bytes (doesn’t have to be multiple of 4)

“store word”“load word”

“store byte”

“load byte”

Register versus Memory

23

109 tape/optical robot

106 disk

100 memory

2 “something great coming up”

1 register

[ns]

2 years

4 hrs

15 min

1 min

2,000 years

addi

24

The following two instructions:

Replace addi:

lw x10, 12(x15) # temp reg x10 gets A[3]
add x12, x12, x10 # reg x12 = reg x12 + A[3]

addi x12, value # put value in A[3]

The add immediate is so common that is deserves its own instruction
This involves going to New York City (load from memory)

Poll

25

addi x11, x0, 0x49C
sw x11, 0(x5)
lb x12, 0(x5)

Reminder: 1 word = 4 bytes
Reminder: 1 hex digit = 4-bit pattern

Let us assume 32-bit register
PollEv.com /gguidi
Or send gguidi to 22333

https://pollev.com/gguidi

26

addi x11, x0, 0x49C
sw x11, 0(x5)
lb x12, 0(x5)

Let us assume 32-bit register

addi = add immidiate

x0 is always 0!

So this just loads 0x49C (hex) into x11

Reminder: 1 word = 4 bytes
Reminder: 1 hex digit = 4-bit pattern

sw and lb

27

addi x11, x0, 0x49C
sw x11, 0(x5)
lb x12, 0(x5)

Let us assume 32-bit register

So this just loads 0x49C (hex) into x11

sw = store word (32-bit)

It takes the value in x11 and writes 1 word
to memory starting at address in x5

In memory at x5, the 32-bit value
0x0000049C is stored

→ sw does not update any register in the
register file; only memory is updated

Reminder: 1 word = 4 bytes
Reminder: 1 hex digit = 4-bit pattern

sw and lb

28

addi x11, x0, 0x49C
sw x11, 0(x5)
lb x12, 0(x5)

Let us assume 32-bit register

So this just loads 0x49C (hex) into x11

sw = store word (32-bit)

It takes the value in x11 and writes 1 word
to memory starting at address in x5

In memory at x5, the 32-bit value
0x0000049C is stored

0x9C
0x04
0x00
0x00

x5 + 0
x5 + 1
x5 + 2
x5 + 3

memory address (little endian) value

Reminder: 1 word = 4 bytes
Reminder: 1 hex digit = 4-bit pattern

sw and lb

29

addi x11, x0, 0x49C
sw x11, 0(x5)
lb x12, 0(x5)

Let us assume 32-bit register

So this just loads 0x0000049C (hex) into x11

x5 stores 0x0000049C

lb = load byte (8-bit), sign-extend to 32-bit

This loads the first byte from memory at x5

x5 + 0 = 0x9C

0x9C
0x04
0x00
0x00

x5 + 0
x5 + 1
x5 + 2
x5 + 3

memory address (little endian) value

→ lb updates x12 in the register file

Reminder: 1 word = 4 bytes
Reminder: 1 hex digit = 4-bit pattern

sw and lb

30

addi x11, x0, 0x49C
sw x11, 0(x5)
lb x12, 0(x5)

Let us assume 32-bit register

So this just loads 0x0000049C (hex) into x11

x5 stores 0x0000049C

lb = load byte (8-bit), sign-extend to 32-bit

This loads the first byte from memory at x5

x5 + 0 = 0x9C

0x9C16 = 100111002

MSB is 1 → negative!

= -10010

Reminder: 1 word = 4 bytes
Reminder: 1 hex digit = 4-bit pattern

sw and lb

31

addi x11, x0, 0x49C
sw x11, 0(x5)
lb x12, 0(x5)

Let us assume 32-bit register

So this just loads 0x0000049C (hex) into x11

x5 stores 0x0000049C

lb = load byte (8-bit), sign-extend to 32-bit

This loads the first byte from memory at x5

x5 + 0 = 0x9C

0x9C16 = 100111002 = -10010

x12 stores -10010 = 0xFFFFFF9C16Ok, what about hex? E.g., -1 = FFFF

If MSB = 0-7 ➡ then append 0s
Otherwise append Fs

Recall

Reminder: 1 word = 4 bytes
Reminder: 1 hex digit = 4-bit pattern

sw and lb

Data Transfer Conclusion

32

• The memory is byte-addressable, but lw and sw access one word at a
time

• A pointer (used by lw and sw) is just a memory address, we can add to it
or subtract from it (using offset)

• Partial memory hierarchy (register versus DRAM)

• Bit sign-extension and zero-extension

• Review of endianess

Ok, let’s move on to RISC-V control flow

33

“branch if equal”

→ If rs1 == rs2, then go to the instruction at label

Computer Decisions Making

34

I.e., based on computation, do something different
• In programming languages, if-statement

RISC-V if-statement instruction:

beq rs1, rs2, label It marks the address of an
instruction

Computer Decisions Making

35

I.e., based on computation, do something different
• In programming languages, if-statement

RISC-V if-statement instruction:

beq rs1, rs2, label

bne rs1, rs2, label
“branch if not equal”

→ If rs1 != rs2, then go to the instruction at label

“branch if equal”

→ If rs1 == rs2, then go to the instruction at label

It marks the address of an
instruction

Types of Branches

36

• Branch: change of control flow

• Conditional branch: change control flow depending on outcome of
comparison

beq, bne

blt, bge

bltu, bgeu

“branch if less than”, “branch if greater or equal than”

“branch if less than” unsigned, “branch if greater than or equal to” unsigned

x1 = 11112 → 1510 if unsigned and -110 if signed

x2 = 00002 → 010

The result of x1 < x2 changes if we use blt (true) vs bltu (false)

Types of Branches

37

• Branch: change of control flow

• Conditional branch: change control flow depending on outcome of
comparison

beq, bne

blt, bge

bltu, bgeu

→ beq, bne, blt, etc. do not update any register in the register file
→ Branches only affect program counter (PC)

“branch if less than”, “branch if greater or equal than”

“branch if less than” unsigned, “branch if greater than or equal to” unsigned

Types of Branches

38

• Branch: change of control flow

• Unconditional branch: always branch

jump (j)

• Conditional branch: change control flow depending on outcome of
comparison

beq, bne

blt, bge

bltu, bgeu

“branch if less than”, “branch if greater or equal than”

“branch if less than” unsigned, “branch if greater than or equal to” unsigned

j label == beq x0, x0, label

Points to 1012

address instruction

------- -----------

 1000 beq x10, x12, mahler

 1004 sub x5, x5, x1

 1008 srli x5, x5, 0x01

 1012 add x1, x2, x3 (label) mahler

beq

39

beq rs1, rs2, label It marks the address of an instruction

1 line is 1 instruction, 1 line is 1 word, 1 line “includes” 4 bytes

The assembler computes the branch offset:

offset = label_address - PC =

Offset = 0x1012 - 0x1000 = 12

If the branch is taken, we skip the instruction at 0x1004 and the instruction at 0x1008 and
jump directly to mahler, i.e., 0x1012

…and encodes it in the instruction itself as an imm

In machine code, the instruction no longer says
mahler — it has a fixed signed offset (12)

40

Instruction FETCH DECODE EXECUTE MEMORY WRITEBACK

beq x10, x12, mahler

 beq ✓ ✓ ✓

 sw ✓ ✓ ✓ ✓

 lw ✓ ✓ ✓ ✓ ✓

beq Execution Flow

address instruction

------- -----------

 1000 beq x10, x12, mahler

 1004 sub x5, x5, x1

 1008 srli x5, x5, 0x01

 1012 add x1, x2, x3 (label) mahler

41

Instruction FETCH DECODE EXECUTE MEMORY WRITEBACK

beq x10, x12, mahler

 beq ✓ ✓ ✓

 sw ✓ ✓ ✓ ✓

 lw ✓ ✓ ✓ ✓ ✓

beq Execution Flow

address instruction

------- -----------

 1000 beq x10, x12, mahler

 1004 sub x5, x5, x1

 1008 srli x5, x5, 0x01

 1012 add x1, x2, x3 (label) mahler

“next instruction” if branch not takenFetch beq at 0x1000; compute PC + 4 = 0x1004

✔

42

Instruction FETCH DECODE EXECUTE MEMORY WRITEBACK

beq x10, x12, mahler

 beq ✓ ✓ ✓

 sw ✓ ✓ ✓ ✓

 lw ✓ ✓ ✓ ✓ ✓

✔

beq Execution Flow

Decode beq, read x10 and x12; sign-extend branch offset = 12

address instruction

------- -----------

 1000 beq x10, x12, mahler

 1004 sub x5, x5, x1

 1008 srli x5, x5, 0x01

 1012 add x1, x2, x3 (label) mahler

✔

= label_address - PC =
Offset = 0x1012 - 0x1000 = 12

In machine code, the instruction no longer says mahler
It has a fixed signed offset (12)

43

Instruction FETCH DECODE EXECUTE MEMORY WRITEBACK

beq x10, x12, mahler

 beq ✓ ✓ ✓

 sw ✓ ✓ ✓ ✓

 lw ✓ ✓ ✓ ✓ ✓

✔

beq Execution Flow

Compare x10 == x12 and compute branch_target = PC + offset = 0x1000 + 12 =
0x1012

address instruction

------- -----------

 1000 beq x10, x12, mahler

 1004 sub x5, x5, x1

 1008 srli x5, x5, 0x01

 1012 add x1, x2, x3 (label) mahler

✔ ✔

44

Instruction FETCH DECODE EXECUTE MEMORY WRITEBACK

beq x10, x12, mahler

 beq ✓ ✓ ✓

 sw ✓ ✓ ✓ ✓

 lw ✓ ✓ ✓ ✓ ✓

✔

beq Execution Flow

address instruction

------- -----------

 1000 beq x10, x12, mahler

 1004 sub x5, x5, x1

 1008 srli x5, x5, 0x01

 1012 add x1, x2, x3 (label) mahler

✔ ✔

If x10 == x12, we update the PC and jump directly to mahler

If x10 ≠ x12, we go to the next instruction, i.e., 0x1004

45

Instruction FETCH DECODE EXECUTE MEMORY WRITEBACK

beq x10, x12, mahler

 beq ✓ ✓ ✓

 sw ✓ ✓ ✓ ✓

 lw ✓ ✓ ✓ ✓ ✓

✔

beq Execution Flow

beq doesn’t read nor write to data memory

address instruction

------- -----------

 1000 beq x10, x12, mahler

 1004 sub x5, x5, x1

 1008 srli x5, x5, 0x01

 1012 add x1, x2, x3 (label) mahler

✔ ✔

46

Instruction FETCH DECODE EXECUTE MEMORY WRITEBACK

beq x10, x12, mahler

 beq ✓ ✓ ✓

 sw ✓ ✓ ✓ ✓

 lw ✓ ✓ ✓ ✓ ✓

✔

beq Execution Flow

beq doesn’t write any register; only PC update occurs if branch taken

address instruction

------- -----------

 1000 beq x10, x12, mahler

 1004 sub x5, x5, x1

 1008 srli x5, x5, 0x01

 1012 add x1, x2, x3 (label) mahler

✔ ✔

Example if Statement

47

Let us assume the translations below, compile if block

f → x10, g → x11, h → x12, i → x13, j → x14

if (i == j)
f = g + h;

bne x13, x14, Exit
add x10, x11, x12
Exit: % terminate

Example if-else Statement

48

Let us assume the translations below, compile if-else block

if (i == j)
f = g + h;

else
f = g - h;

bne x13, x14, Else
add x10, x11, x12
j Exit
Else: sub x10, x11, x12
Exit: % terminate

f → x10, g → x11, h → x12, i → x13, j → x14

Loops in C and Assembly

49

3 types of loops:
• while
• do … while

• for

Each can be rewritten as either of the other two!

int main() {
 int i = 0;
 while (i < 10) {
 printf("%d\n", i);
 i++;
 }
 return 0;
}

int main() {
 for (int i = 0; i < 10; i++) {
 printf("%d\n", i);
 }
 return 0;
}

int main() {
 int i = 0;
 do {
 printf("%d\n", i);
 i++;
 } while (i < 10);
 return 0;
}

Loops in C and Assembly

50

int A[20];
// fill A with data
int sum = 0;
for (int i = 0; i < 20; i++)
 sum += A[i];

Loops in C and Assembly

51

 add x9, x8, x0 # x9 = &A[0]
 add x10, x0, x0 # sum = 0
 add x11, x0, x0 # i = 0
 addi x13, x0, 20 # x13 = 20
Loop:
 bge x11, x13, Done
 lw x12, 0(x9) # x12 = A[i]
 add x10, x10, x12 # sum += x12
 addi x9, x9, 4 # &A[i+1]
 addi x11, x11, 1 # i++
 j Loop
Done:

int A[20];
// fill A with data
int sum = 0;
for (int i = 0; i < 20; i++)
 sum += A[i];

Loops in C and Assembly

52

 add x9, x8, x0 # x9 = &A[0]
 add x10, x0, x0 # sum = 0
 add x11, x0, x0 # i = 0
 addi x13, x0, 20 # x13 = 20
Loop:
 bge x11, x13, Done
 lw x12, 0(x9) # x12 = A[i]
 add x10, x10, x12 # sum += x12
 addi x9, x9, 4 # &A[i+1]
 addi x11, x11, 1 # i++
 j Loop
Done:

int A[20];
// fill A with data
int sum = 0;
for (int i = 0; i < 20; i++)
 sum += A[i];

Loops in C and Assembly

53

 add x9, x8, x0 # x9 = &A[0]
 add x10, x0, x0 # sum = 0
 add x11, x0, x0 # i = 0
 addi x13, x0, 20 # x13 = 20
Loop:
 bge x11, x13, Done
 lw x12, 0(x9) # x12 = A[i]
 add x10, x10, x12 # sum += x12
 addi x9, x9, 4 # &A[i+1]
 addi x11, x11, 1 # i++
 j Loop
Done:

int A[20];
// fill A with data
int sum = 0;
for (int i = 0; i < 20; i++)
 sum += A[i];

Loops in C and Assembly

54

 add x9, x8, x0 # x9 = &A[0]
 add x10, x0, x0 # sum = 0
 add x11, x0, x0 # i = 0
 addi x13, x0, 20 # x13 = 20
Loop:
 bge x11, x13, Done
 lw x12, 0(x9) # x12 = A[i]
 add x10, x10, x12 # sum += x12
 addi x9, x9, 4 # &A[i+1]
 addi x11, x11, 1 # i++
 j Loop
Done:

int A[20];
// fill A with data
int sum = 0;
for (int i = 0; i < 20; i++)
 sum += A[i];

Loops in C and Assembly

55

 add x9, x8, x0 # x9 = &A[0]
 add x10, x0, x0 # sum = 0
 add x11, x0, x0 # i = 0
 addi x13, x0, 20 # x13 = 20
Loop:
 bge x11, x13, Done
 lw x12, 0(x9) # x12 = A[i]
 add x10, x10, x12 # sum += x12
 addi x9, x9, 4 # &A[i+1]
 addi x11, x11, 1 # i++
 j Loop
Done:

int A[20];
// fill A with data
int sum = 0;
for (int i = 0; i < 20; i++)
 sum += A[i];

Loops in C and Assembly

56

 add x9, x8, x0 # x9 = &A[0]
 add x10, x0, x0 # sum = 0
 add x11, x0, x0 # i = 0
 addi x13, x0, 20 # x13 = 20
Loop:
 bge x11, x13, Done
 lw x12, 0(x9) # x12 = A[i]
 add x10, x10, x12 # sum += x12
 addi x9, x9, 4 # &A[i+1]
 addi x11, x11, 1 # i++
 j Loop
Done:

int A[20];
// fill A with data
int sum = 0;
for (int i = 0; i < 20; i++)
 sum += A[i];

You can only compare branches using registers—register to register, not e.g.,
branch less than immediate

Loops in C and Assembly

57

 add x9, x8, x0 # x9 = &A[0]
 add x10, x0, x0 # sum = 0
 add x11, x0, x0 # i = 0
 addi x13, x0, 20 # x13 = 20
Loop:
 bge x11, x13, Done
 lw x12, 0(x9) # x12 = A[i]
 add x10, x10, x12 # sum += x12
 addi x9, x9, 4 # &A[i+1]
 addi x11, x11, 1 # i++
 j Loop
Done:

int A[20];
// fill A with data
int sum = 0;
for (int i = 0; i < 20; i++)
 sum += A[i];

Ok, why bge and not blt?
If that test fails, you never enter the for loop—branches usually point to the exit, not the body,

and can save 1 unconditional jump

Loops in C and Assembly

58

 add x9, x8, x0 # x9 = &A[0]
 add x10, x0, x0 # sum = 0
 add x11, x0, x0 # i = 0
 addi x13, x0, 20 # x13 = 20
Loop:
 bge x11, x13, Done
 lw x12, 0(x9) # x12 = A[i]
 add x10, x10, x12 # sum += x12
 addi x9, x9, 4 # &A[i+1]
 addi x11, x11, 1 # i++
 j Loop
Done:

int A[20];
// fill A with data
int sum = 0;
for (int i = 0; i < 20; i++)
 sum += A[i];

Loops in C and Assembly

59

 add x9, x8, x0 # x9 = &A[0]
 add x10, x0, x0 # sum = 0
 add x11, x0, x0 # i = 0
 addi x13, x0, 20 # x13 = 20
Loop:
 bge x11, x13, Done
 lw x12, 0(x9) # x12 = A[i]
 add x10, x10, x12 # sum += x12
 addi x9, x9, 4 # &A[i+1]
 addi x11, x11, 1 # i++
 j Loop
Done:

int A[20];
// fill A with data
int sum = 0;
for (int i = 0; i < 20; i++)
 sum += A[i];

Loops in C and Assembly

60

 add x9, x8, x0 # x9 = &A[0]
 add x10, x0, x0 # sum = 0
 add x11, x0, x0 # i = 0
 addi x13, x0, 20 # x13 = 20
Loop:
 bge x11, x13, Done
 lw x12, 0(x9) # x12 = A[i]
 add x10, x10, x12 # sum += x12
 addi x9, x9, 4 # &A[i+1]
 addi x11, x11, 1 # i++
 j Loop
Done:

int A[20];
// fill A with data
int sum = 0;
for (int i = 0; i < 20; i++)
 sum += A[i];

Loops in C and Assembly

61

 add x9, x8, x0 # x9 = &A[0]
 add x10, x0, x0 # sum = 0
 add x11, x0, x0 # i = 0
 addi x13, x0, 20 # x13 = 20
Loop:
 bge x11, x13, Done
 lw x12, 0(x9) # x12 = A[i]
 add x10, x10, x12 # sum += x12
 addi x9, x9, 4 # &A[i+1]
 addi x11, x11, 1 # i++
 j Loop
Done:

int A[20];
// fill A with data
int sum = 0;
for (int i = 0; i < 20; i++)
 sum += A[i];

Loops in C and Assembly

62

 add x9, x8, x0 # x9 = &A[0]
 add x10, x0, x0 # sum = 0
 add x11, x0, x0 # i = 0
 addi x13, x0, 20 # x13 = 20
Loop:
 bge x11, x13, Done
 lw x12, 0(x9) # x12 = A[i]
 add x10, x10, x12 # sum += x12
 addi x9, x9, 4 # &A[i+1]
 addi x11, x11, 1 # i++
 j Loop
Done:

int A[20];
// fill A with data
int sum = 0;
for (int i = 0; i < 20; i++)
 sum += A[i];

Loops in C and Assembly

63

 add x9, x8, x0 # x9 = &A[0]
 add x10, x0, x0 # sum = 0
 add x11, x0, x0 # i = 0
 addi x13, x0, 20 # x13 = 20
Loop:
 bge x11, x13, Done
 lw x12, 0(x9) # x12 = A[i]
 add x10, x10, x12 # sum += x12
 addi x9, x9, 4 # &A[i+1]
 addi x11, x11, 1 # i++
 j Loop
Done:

int A[20];
// fill A with data
int sum = 0;
for (int i = 0; i < 20; i++)
 sum += A[i];

1 conditional jump and 1 unconditional jump

