
CS3410: Computer Systems and Organization
LEC10: RISC-V Data Transfer

Professor Giulia Guidi

Monday, September 29, 2025

1

Credits: Bala, Bracy, Garcia, Guidi, Kao, Sampson, Sirer, Weatherspoon

2

Quick Introduction

Mahler

Nina

Plan for Today

• Review

• RISC-V Data Transfer

• Possibly RISC-V Control Flow or Decision Making (likely on Wednesday)

3

PSA: Prelim & Prelim Survey

Review of memory basics and Endianess

4

Zero-Extension

5

Unsigned number extension from 4 to 8 bit:

E.g., 1 ➡ 0001 ➡ 0000 0001
append additiona bits and set them to zero

look at the most significant bit (MSB), if 0 ➡ then append 0s
look at the most significant bit (MSB), if 1 ➡ then append 1s

Sign-Extension

6

Two’s complement: To negate any number, flip the bits, and add one

E.g., -1: 1 ➡ 0001 ➡ 1110 ➡ 1111

Ok, what if I want to represent -1 on 8 bits instead of 4?

Ok, what about hex? E.g., -1 = FFFF

-1: 1111 ➡ 1111 1111
 7: 0111 ➡ 0000 0111

If MSB = 0-7 ➡ then append 0s
Otherwise append Fs

basically, smear the MSB like butter on bread

E.g., 0000 0111 = 7

Bit Truncation

7

Ok, so what if we need to move from 8 to 4 bits?

E.g., 0000 0111

E.g., 0000 1111

E.g., 0000 0111 = 7 😃

😥E.g., 0000 1111 = -1
if signed

= 15

Can’t fix that—Can’t represent 15 on 4 bits if signed

Memory is Byte-Addressable

8

The memory is like an array of bytes—think of memory as a long sequence of numbered
boxes

address value (hex) value (8-bit binary)
------- ----------- --------------------
 1000 0xAA 10101010
 1001 0xBB 10111011
 1002 0xCC 11001100
 1003 0xDD 11011101

• Each address is like the index of a box

• Each box stores 8 bits = 1 byte of data

Memory is Byte-Addressable

9

• 4 bytes = 1 word, thus the word addresses are 4 bytes apart

• So, larger data (e.g., 32-bit word) is stored across multiple consecutive addresses

• A word must start at an address divisible by 4 (alignment)

address value (hex) value (8-bit binary)
------- ----------- --------------------
 1000 0xAA 10101010
 1001 0xBB 10111011
 1002 0xCC 11001100
 1003 0xDD 11011101 <- 1 word (bytes 1000–1003)
 1004 0x11 00010001
 1005 0x22 00100010
 1006 0x33 00110011
 1007 0x44 01000100 <- 1 word (bytes 1004–1007)

10

Big Endian and Little Endian

Endianness = how those 4 bytes are ordered in memory

• Bits are always stored as usual within a byte

int x = 0xDDCCBBAA (1 word)

address value (hex) value (8-bit binary)
------- ----------- --------------------
 1000 0xAA (LSB) 10101010
 1001 0xBB 10111011
 1002 0xCC 11001100
 1003 0xDD (MSB) 11011101 <- 1 word (bytes 1000–1003)

Little endian (RISC-V default): lowest-addressed byte = least significant byte (LSB)

11

Big Endian and Little Endian

Endianness = how those 4 bytes are ordered in memory

• Bits are always stored as usual within a byte

int x = 0xDDCCBBAA (1 word)

address value (hex) value (8-bit binary)
------- ----------- --------------------
 1000 0xDD (MSB) 10101010
 1001 0xCC 10111011
 1002 0xBB 11001100
 1003 0xAA (LSB) 11011101 <- 1 word (bytes 1000–1003)

Big endian: lowest-addressed byte = most significant byte (MSB)

Poll

12

PollEv.com /gguidi
Or send gguidi to 22333

Q: If we store the 32-bit value 0xF0CACC1A at address 1000 — what is stored at address
1000 in little endian?

https://pollev.com/gguidi

Poll

13

address value (hex)
------- -----------
 1000 0x1A (LSB)
 1001 0xCC
 1002 0xCA
 1003 0xF0 (MSB)

Little endian (RISC-V default): lowest-addressed byte = least significant byte (LSB)

Q: If we store the 32-bit value 0xF0CACC1A at address 1000 — what is stored at address
1000 in little endian?

Ok, moving on to RISC-V assembly

14

15

Basic job of a CPU: execute instructions!

RISC-V Overview
Central Processing Unit

the primitive operations that the CPU may execute

Instruction Set Architecture

An ISA defines what operations a particular CPU supports, and how it implements
them

• The assembly language: the low-level CPU instructions
• The machine language: how the instructions are represented, in bits

RISC-V ISA defines instructions for the CPU down to the bit level:
0000000 01010 10011 000 10010 0110011add x18, x19, x10

assembly code machine code

16

RISC-V Overview

High Level Language Program
(e.g. C)

temp = v[k];
v[k] = v[k+1];

Assembly Language Program
(e.g., RISC-V)

Compiler
lw x13, 0(x12) # temp = v[k]
lw x14, 4(x12) # x14 = v[k+1]
sw x14, 0(x12) # v[k] = v[k+1]

Machine Language Program
(e.g., RISC-V)

Assembler
0000 0000 0000 0110 0010 0110 1000 0011
0000 0000 0100 0110 0010 0111 0000 0011
0000 0000 1110 0110 0010 0000 0010 0011

Hardware Architecture
Description (e.g., block diagram)

Hardware

Logic Circuit Description
(e.g., circuit schematic diagram)

17

RISC-V Overview

Assembly Language Program
(e.g., RISC-V)

lw x13, 0(x12) # temp = v[k]
lw x14, 4(x12) # x14 = v[k+1]
sw x14, 0(x12) # v[k] = v[k+1]

Machine Language Program
(e.g., RISC-V)

Assembler
0000 0000 0000 0110 0010 0110 1000 0011
0000 0000 0100 0110 0010 0111 0000 0011
0000 0000 1110 0110 0010 0000 0010 0011

add rd, rs1, rs2
R[rd] = R[rs1] + R[rs2]

18

RISC-V addition and subtraction

RISC-V add immediate

sub rd, rs1, rs2
R[rd] = R[rs1] - R[rs2]

addi rd, rs1, imm
R[rd] = R[rs1] + imm

RISC-V shift right logical immediate

destination register

source registers

srli rd, rd, 1
R[rd] = R[rd] >> 1 (eq. to /2)

RISC-V Assembly

19

Disassembled assembly

0000000000000000 <mean>:
 0: 00b50533 add a0, a0, a1
 4: 00155513 srli a0, a0, 0x1
 8: 00008067 ret

In RISC-V, every instruction is exactly 4 bytes long, so the next instruction
starts at address 4

function address function name

instruction

offset (word)

The instructions are sitting on “function address” + “offset”

destination register

source registers

RISC-V Assembly

instruction

20

Disassembled assembly

0000000000000000 <mean>:
 0: 00b50533 add a0, a0, a1
 4: 00155513 srli a0, a0, 0x1
 8: 00008067 ret

In RISC-V, every instruction is exactly 4 bytes long, so the next instruction
starts at address 4

function address function name

offset (word)

The instructions are sitting on “function address” + “offset”

destination register

source registers

RISC-V Assembly

address value (hex)
------- -----------
 0000 0x33 (LSB)
 0001 0x05
 0002 0xB5
 0003 0x00 (MSB) <- 1 word (bytes 0000–0003)
 0004 0x13 (LSB)
 0005 0x55
 0006 0x15
 0007 0x00 (MSB) <- 1 word (bytes 0004–0007)
 0008 0x67 (LSB)
 0009 0x80
 0010 0x00
 0011 0x00 (MSB) <- 1 word (bytes 0008–0011)

RISC-V Data Transfer (Memory Op)

21

22

Data Transfer: Load from and Store to Memory

CPU MEMORY

Store to
Load from

Principle of Locality and Memory Hierarchy

23

sp
ee

d
in

cr
ea

se
s

si
ze

 in
cr

ea
se

s

Register versus Memory

24

Given that:

• Registers: 32 words (256 bytes is RV64 or 128 bytes if RV32)

• DRAM (data memory): billions of bytes (2-96 GB on a typical laptop)

Physics dictates that smaller is faster

Registers are 50-500 times faster than DRAM (one access latency, tens of ns)!

Register versus Memory

25

109 tape/optical robot

106 disk

100 memory

2 “something great coming up”

1 register

[ns]

2 years

4 hrs

15 min

1 min

2,000 years

Poll

26

PollEv.com /gguidi
Or send gguidi to 22333

C code:

int A[100];
g = h + A[3];

Q: Given int A[100]; in the slide, where does A sit?

https://pollev.com/gguidi

Load from Memory to Register

27

C code:

int A[100]; # A sits on the stack
g = h + A[3];

Load from Memory to Register

28

C code:

Using “load word” (lw) in RISC-V:

int A[100];
g = h + A[3];

lw x10, 12(x15) # Reg x10 gets A[3]
add x11, x12, x10 # g = h + A[3]

1 word = 4 bytes

Load from (Data flow)

x15: address in memory (pointer to A[0])
12: offset in bytes but we load one word at a time

→ lw updates x10 in the register file

Load from Memory to Register

29

C code:

Using “load word” (lw) in RISC-V:

int A[100];
g = h + A[3];

lw x10, 12(x15) # Reg x10 gets A[3]
add x11, x12, x10 # g = h + A[3]

1 word = 4 bytes

x15: address in memory (pointer to A[0])
12: offset in bytes but we load one word at a time

→ lw updates x10 in the register file

address value (hex)

------- -----------

 1000 0x03 (LSB)

 1001 0x87

 1002 0xC7

 1003 0x00 (MSB) <- 1 word (bytes 1000–1003)

 1004 0x33 (LSB)

 1005 0x06

 1006 0xA6

 1007 0x00 (MSB) <- 1 word (bytes 1004–1007)

E: Check the hex for this lw and add

Store from Register to Memory

30

Using “store word” (sw) in RISC-V:

int A[100];
A[10] = h + A[3];

lw x10, 12(x15) # Temp reg x10 gets A[3]
add x11, x12, x10 # Temp reg x11 gets h + A[3]
sw x11, 40(x15) # A[10] = h + A[3]

C code:

Store to (Data flow)

x15 + 12

x15 + 40
Offset must be a multiple of 4

1 word = 4 bytes

→ sw does not update any register in the register file; only memory 40(x15) is updated

E: Do the hex translation for the sw, and draw the
corresponding memory view (i.e., like in the previous
slide)

Poll

31

PollEv.com /gguidi
Or send gguidi to 22333

True or False: whether a compiler puts a local variable in a register or on the stack doesn’t
impact performance

https://pollev.com/gguidi

Good time to review the CPU stages

32

33https://www.cs.cornell.edu/courses/cs3410/2025sp/notes/cpu_stages.html

CPU 5 Stages in RISC-V
?

34https://www.cs.cornell.edu/courses/cs3410/2025sp/notes/cpu_stages.html

CPU 5 Stages in RISC-V

35https://www.cs.cornell.edu/courses/cs3410/2025sp/notes/cpu_stages.html

Data Transfer: Load from and Store to Memory

Load from

Store to

36https://www.cs.cornell.edu/courses/cs3410/2025sp/notes/cpu_stages.html

CPU 5 Stages in RISC-V

• F: fetch instruction from instruction memory

•Update Program Counter (PC), normally PC + 4, unless a
branch/jump (e.g., bne, beq)

Covered in more detailed on
Wednesday

37https://www.cs.cornell.edu/courses/cs3410/2025sp/notes/cpu_stages.html

CPU 5 Stages in RISC-V

• D: decode opcode, figure out instruction type

• Read registers from the register file

• Generate control signals (ALU operation, memory access,
writeback control)

38https://www.cs.cornell.edu/courses/cs3410/2025sp/notes/cpu_stages.html

CPU 5 Stages in RISC-V

• X: execute — perform ALU operation (add, xor, shift, compare)

• Compute memory address for load (e.g., lw) and store (e.g., sw)

• Compute branch target address

• Compare registers for branch decisions (e.g., bne, beq)

Covered in more detailed on
Wednesday

39https://www.cs.cornell.edu/courses/cs3410/2025sp/notes/cpu_stages.html

CPU 5 Stages in RISC-V

• M: memory access

• For load (e.g., lw): read data memory

• For store (e.g., sw): write register value to data memory

• For ALU-only instructions: nothing happens here

store only updates data memory

load updates the register file

this goes back to the register file

40https://www.cs.cornell.edu/courses/cs3410/2025sp/notes/cpu_stages.html

CPU 5 Stages in RISC-V

• W: write back

• The results are written back into the register file

• ALU results (e.g., add) or memory data (from lw)

• Control ensures only the right instructions are written back

this goes back to the register file

ALU results

41

CPU 5 Stages in RISC-V

Instruction FETCH DECODE EXECUTE MEMORY WRITEBACK

 add rd, rs1, rs2

 beq ✓ ✓ ✓

 sw ✓ ✓ ✓ ✓

 lw ✓ ✓ ✓ ✓ ✓
The instruction is fetched

from the instruction memory

✔

The registers rs1 and rs2 read,
control signals set

✔

ALU adds rs1 + rs2

✔

Don’t need it, no memory
access

ALU result written back to the
destination register rd

✔

42

CPU 5 Stages in RISC-V

Instruction FETCH DECODE EXECUTE MEMORY WRITEBACK

 srli rd, rs1, imm

 beq ✓ ✓ ✓

 sw ✓ ✓ ✓ ✓

 lw ✓ ✓ ✓ ✓ ✓
The instruction is fetched

from the instruction memory

✔ ✔

Decode instruction, read register
rs1, extract the immediate

srli x5, x6, 10

funct7 | shamt[4:0] | rs1 | funct3 | rd | opcode
I-type RV32:

101 00100110000000
n/a

01010
1010

00110
610 00101

510

• The immediate (imm) is encoded directly inside the 32-bit instruction (not stored in a register)

• In the Decode stage, the control logic and immediate generator unit take the 32-bit instruction, extract the right
field, and sign-extend or zero-extend it as required

43

CPU 5 Stages in RISC-V

Instruction FETCH DECODE EXECUTE MEMORY WRITEBACK

 srli rd, rs1, imm

 beq ✓ ✓ ✓

 sw ✓ ✓ ✓ ✓

 lw ✓ ✓ ✓ ✓ ✓

ALU performs a logical right shift of
rs1 by the immediate value

✔

Result of shift written into
register rd

✔

Don’t need it, no load/store

The instruction is fetched
from the instruction memory

✔ ✔

Decode instruction, read register
rs1, extract the immediate

44

CPU 5 Stages in RISC-V

Instruction FETCH DECODE EXECUTE MEMORY WRITEBACK

 lw rd, offset(rs1)

 beq ✓ ✓ ✓

 sw ✓ ✓ ✓ ✓

 lw ✓ ✓ ✓ ✓ ✓

ALU computes effective address =
rs1 base + offset

✔

The loaded value is written
back into destination register

rd

✔

The instruction is fetched
from the instruction memory

✔

Data memory accessed,
value loaded

✔✔

Decode instruction, read register
rs1, extract the offset (imm)

45

CPU 5 Stages in RISC-V

Instruction FETCH DECODE EXECUTE MEMORY WRITEBACK

 sw rs2, offset(rs1)

 beq ✓ ✓ ✓

 sw ✓ ✓ ✓ ✓

 lw ✓ ✓ ✓ ✓ ✓

ALU computes effective address =
rs1 base + offset

✔

The instruction is fetched
from the instruction memory

✔

Data memory accessed,
rs2 value stored

✔

There’s nothing to write back
into registers

✔

Decode instruction, read register
rs2, rs1, extract the offset

Ok, back to data transfer

46

Loading and Storing Bytes

47

In addition to lw and sw, RISC-V has lb and sb “store byte”

“load byte”

Loading and Storing Bytes

48

In addition to lw and sw, RISC-V has lb and sb

Uses same format as lw and sw:

• E.g., lb x10, 3(x11)

“store byte”

“load byte”

“store word”

“load word”

pointer to memory

offset in bytes (doesn’t have to be multiple of 4)

1. Compute the effective address = content of x11 + 3
• Let us assume 3(x11) contains the value 4 (decimal) and we use 16-bit register

• 4 (decimal) = 0000 0000 0000 0100 (16-bit binary)

Loading and Storing Bytes

49

In addition to lw and sw, RISC-V has lb and sb

Uses same format as lw and sw:

• E.g., lb x10, 3(x11)

“store byte”

“load byte”

“store word”

“load word”

pointer to memory

offset in bytes (doesn’t have to be multiple of 4)

1. Compute the effective address = content of x11 + 3
• Let us assume 3(x11) contains the value 4 (decimal) and we use 16-bit register

• 4 (decimal) = 0000 0000 0000 0100 (16-bit binary)

• The loaded byte is 0000 0100 (8-bit binary)
2. Then, load 1 byte from memory at that address

Loading and Storing Bytes

50

In addition to lw and sw, RISC-V has lb and sb

Uses same format as lw and sw:

• E.g., lb x10, 3(x11)

“store byte”

“load byte”

“store word”

“load word”

pointer to memory

offset in bytes (doesn’t have to be multiple of 4)

• The loaded byte is 0000 0100 (8-bit binary)
2. Then, load 1 byte from memory at that address

• The final value in x10 is 0000 0000 0000 0100 (16-bit binary) = 4 (decimal)
3. Finally, sign-extend the byte to 16 bits (we assumed x10 is a 16-bit register)

Loading and Storing Bytes

51

In addition to lw and sw, RISC-V has lb and sb

Uses same format as lw and sw:

• E.g., lb x10, 3(x11)

“store byte”

“load byte”

“store word”

“load word”

pointer to memory

offset in bytes (doesn’t have to be multiple of 4)

1. Compute the effective address = content of x11 + 3
• Ok but what if 3(x11) contains the value 3410 (decimal) and we use 16-bit register

• 3410 (decimal) = 0000 1101 0101 0010 (16-bit binary)

• The loaded byte is 0101 0010 (8-bit binary)
2. Then, load 1 byte from memory at that address

Loading and Storing Bytes

52

In addition to lw and sw, RISC-V has lb and sb

Uses same format as lw and sw:

• E.g., lb x10, 3(x11)

“store byte”

“load byte”

“store word”

“load word”

pointer to memory

offset in bytes (doesn’t have to be multiple of 4)

• The loaded byte is 0101 0010 (8-bit binary)
2. Then, load 1 byte from memory at that address

• The final value in x10 is 0000 0000 0101 0010 (16-bit binary)
3. Finally, sign-extend the byte to 16 bits (we assumed x10 is a 16-bit register)

• Ops! 0000 0000 0101 0010 (16-bit binary) = 82 (decimal) != 3410 (decimal)

lbu

53

In addition to lw and sw, RISC-V has lb and sb

lbu = unsigned load byte It doesn’t need to preserve the sign

Uses same format as lw and sw:

• E.g., lb x10, 3(x11)

“store word”

“load word”

pointer to memory

offset in bytes (doesn’t have to be multiple of 4)

lbu

54

In addition to lw and sw, RISC-V has lb and sb

lbu = unsigned load byte

But no sbu, why?

It doesn’t need to preserve the sign: zero extension

It doesn’t matter! You’re just writing the low 8 bits of a register
directly to memory, so no extension

Uses same format as lw and sw:

• E.g., lb x10, 3(x11)

“store word”

“load word”

pointer to memory

offset in bytes (doesn’t have to be multiple of 4)

addi

55

The following two instructions:

Replace addi:

lw x10, 12(x15) # temp reg x10 gets A[3]
add x12, x12, x10 # reg x12 = reg x12 + A[3]

addi x12, value # put value in A[3]

The add immediate is so common that is deserves its own instruction
This involves going to New York City (load from memory)

