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• Draw the Circuits



1-bit Full Adder

10

?

S

C
out

A B

C
in

• Adds three 1-bit numbers
• Computes 1-bit result and 1-bit carry-out
• Can be cascaded

• Fill in Truth Table
• Create Sum-of-Product Form
• Draw the Circuits

A B Cin Cout S
0 0 0 0 0
0 0 1
0 1 0
0 1 1
1 0 0
1 0 1
1 1 0
1 1 1

0 + 0 + 0 = 0



A B Cin Cout S
0 0 0 0 0
0 0 1 0 1
0 1 0 0 1
0 1 1
1 0 0 0 1
1 0 1
1 1 0
1 1 1

1-bit Full Adder

11

?

S

C
out

A B

C
in

• Adds three 1-bit numbers
• Computes 1-bit result and 1-bit carry-out
• Can be cascaded

• Fill in Truth Table
• Create Sum-of-Product Form
• Draw the Circuits

1 + 0 + 0 = 1



A B Cin Cout S
0 0 0 0 0
0 0 1 0 1
0 1 0 0 1
0 1 1 1 0
1 0 0 0 1
1 0 1 1 0
1 1 0 1 0
1 1 1

1-bit Full Adder

12

?

S

C
out

A B

C
in

• Adds three 1-bit numbers
• Computes 1-bit result and 1-bit carry-out
• Can be cascaded

• Fill in Truth Table
• Create Sum-of-Product Form
• Draw the Circuits

1 + 1 + 0 = 210 = 102



A B Cin Cout S
0 0 0 0 0
0 0 1 0 1
0 1 0 0 1
0 1 1 1 0
1 0 0 0 1
1 0 1 1 0
1 1 0 1 0
1 1 1 1 1

1-bit Full Adder

13

?

S

C
out

A B

C
in

• Adds three 1-bit numbers
• Computes 1-bit result and 1-bit carry-out
• Can be cascaded

• Fill in Truth Table
• Create Sum-of-Product Form
• Draw the Circuits

1 + 1 + 1 = 310 = 112



A B Cin Cout S
0 0 0 0 0
0 0 1 0 1
0 1 0 0 1
0 1 1 1 0
1 0 0 0 1
1 0 1 1 0
1 1 0 1 0
1 1 1 1 1

1-bit Full Adder

14

?

S

C
out

A B

C
in

• Adds three 1-bit numbers
• Computes 1-bit result and 1-bit carry-out
• Can be cascaded

• Fill in Truth Table
• Create Sum-of-Product Form
• Draw the Circuits

 



A B Cin Cout S
0 0 0 0 0
0 0 1 0 1
0 1 0 0 1
0 1 1 1 0
1 0 0 0 1
1 0 1 1 0
1 1 0 1 0
1 1 1 1 1

1-bit Full Adder

15

?

S

C
out

A B

C
in

• Adds three 1-bit numbers
• Computes 1-bit result and 1-bit carry-out
• Can be cascaded

• Fill in Truth Table
• Create Sum-of-Product Form
• Draw the Circuits

 



16

C
out

S

A B

C
in

 

A B Cin Cout S
0 0 0 0 0
0 0 1 0 1
0 1 0 0 1
0 1 1 1 0
1 0 0 0 1
1 0 1 1 0
1 1 0 1 0
1 1 1 1 1

1-bit Full Adder

?

S

C
out

A B

C
in



4-bit Adder

17

• Adds two 4-bit numbers, along with carry-in

• Computes 4-bit result and carry out

• 3 + 2 = 5

• Carry-out 🡪 result >  4 bits

A
0
   B

0

S
0

A
1
   B

1

S
1

A
2
   B

2

S
2

A
3
   B

3

S
3

C
out

C
in

0                   0                   1                   10                   0                   1                   0

0



4-bit Adder

18

• Adds two 4-bit numbers, along with carry-in

• Computes 4-bit result and carry out

• 3 + 2 = 5

• Carry-out 🡪 result >  4 bits

A
0
   B

0

S
0

A
1
   B

1

S
1

A
2
   B

2

S
2

A
3
   B

3

S
3

C
out

C
in

0                   0                   1                   10                   0                   1                   0

1

00



4-bit Adder

19

• Adds two 4-bit numbers, along with carry-in

• Computes 4-bit result and carry out

• 3 + 2 = 5

• Carry-out 🡪 result >  4 bits

A
0
   B

0

S
0

A
1
   B

1

S
1

A
2
   B

2

S
2

A
3
   B

3

S
3

C
out

C
in

0                   0                   1                   10                   0                   1                   0

1

0

0

01



4-bit Adder

20

• Adds two 4-bit numbers, along with carry-in

• Computes 4-bit result and carry out

• 3 + 2 = 5

• Carry-out 🡪 result >  4 bits

A
0
   B

0

S
0

A
1
   B

1

S
1

A
2
   B

2

S
2

A
3
   B

3

S
3

C
out

C
in

0                   0                   1                   10                   0                   1                   0

1

0

0

0

1

10



4-bit Adder

21

• Adds two 4-bit numbers, along with carry-in

• Computes 4-bit result and carry out

• 3 + 2 = 5

• Carry-out 🡪 result >  4 bits

A
0
   B

0

S
0

A
1
   B

1

S
1

A
2
   B

2

S
2

A
3
   B

3

S
3

C
out

C
in

0                   0                   1                   10                   0                   1                   0

1

0

0

0

1

1

0

00



4-bit Adder to 4-bit Subtractor

22

• What if we want to subtract instead?

A
0
   B

0

S
0

A
1
   B

1

S
1

A
2
   B

2

S
2

A
3
   B

3

S
3

C
out

C
in

0                   0                   1                   10                   0                   1                   0

0



4-bit Adder to 4-bit Subtractor

23

• What if we want to subtract instead?

• How do we calculate 3 - 2 = 1?

A
0
   B

0

S
0

A
1
   B

1

S
1

A
2
   B

2

S
2

A
3
   B

3

S
3

C
out

C
in

0                   0                   1                   10                   0                   1                   0

0



4-bit Adder to 4-bit Subtractor

24

• What if we want to subtract instead?

• How do we calculate 3 - 2 = 1?

• We know how to calculate 3 + (-2) = 1

A
0
   B

0

S
0

A
1
   B

1

S
1

A
2
   B

2

S
2

A
3
   B

3

S
3

C
out

C
in

0                   0                   1                   10                   0                   1                   0

0



4-bit Adder to 4-bit Subtractor

25

• What if we want to subtract instead?

• How do we calculate 3 - 2 = 1?

• We know how to calculate 3 + (-2) = 1

• How do we negate a two’s complement number?

A
0
   B

0

S
0

A
1
   B

1

S
1

A
2
   B

2

S
2

A
3
   B

3

S
3

C
out

C
in

0                   0                   1                   10                   0                   1                   0

0



4-bit Adder to 4-bit Subtractor

26

• What if we want to subtract instead?

• How do we calculate 3 - 2 = 1?

• We know how to calculate 3 + (-2) = 1

• How do we negate a two’s complement number?

• -2: !(0010) + 1 = 1101 + 1 = 1110

A
0
   B

0

S
0

A
1
   B

1

S
1

A
2
   B

2

S
2

A
3
   B

3

S
3

C
out

C
in

0                   0                   1                   10                   0                   1                   0

0



4-bit Adder to 4-bit Subtractor

27

• What if we want to subtract instead?

• How do we calculate 3 - 2 = 1?

• We know how to calculate 3 + (-2) = 1

• How do we negate a two’s complement number?

• -2: !(0010) + 1 = 1101 + 1 = 1110

A
0
   B

0

S
0

A
1
   B

1

S
1

A
2
   B

2

S
2

A
3
   B

3

S
3

C
out

C
in

0                   0                   1                   10                   0                   1                   0

0



4-bit Adder to 4-bit Subtractor

28

• What if we want to subtract instead?

• How do we calculate 3 - 2 = 1?

• We know how to calculate 3 + (-2) = 1

• How do we negate a two’s complement number?

• -2: !(0010) + 1 = 1101 + 1 = 1110

A
0
   B

0

S
0

A
1
   B

1

S
1

A
2
   B

2

S
2

A
3
   B

3

S
3

C
out

C
in

0                   0                   1                   10                   0                   1                   0

0

1                   1                   0                   1



4-bit Adder to 4-bit Subtractor

29

• How do we calculate 3 - 2 = 1?

• We know how to calculate 3 + (-2) = 1

• -2: !(0010) + 1 = 1101 + 1 = 1110

• 3 - 2 = 3 + (-2) 

A
0
   B

0

S
0

A
1
   B

1

S
1

A
2
   B

2

S
2

A
3
   B

3

S
3

C
out

C
in

0                   0                   1                   10                   0                   1                   0

0

1                   1                   0                   1



4-bit Adder to 4-bit Subtractor

30

• How do we calculate 3 - 2 = 1?

• We know how to calculate 3 + (-2) = 1

• -2: !(0010) + 1 = 1101 + 1 = 1110

• 3 - 2 = 3 + (-2) = 3 + 1101
2
 + 1

A
0
   B

0

S
0

A
1
   B

1

S
1

A
2
   B

2

S
2

A
3
   B

3

S
3

C
out

C
in

0                   0                   1                   10                   0                   1                   0

0

1                   1                   0                   1



4-bit Adder to 4-bit Subtractor

31

• How do we calculate 3 - 2 = 1?

• We know how to calculate 3 + (-2) = 1

• -2: !(0010) + 1 = 1101 + 1 = 1110

• 3 - 2 = 3 + (-2) = 3 + 1101
2
 + 1

A
0
   B

0

S
0

A
1
   B

1

S
1

A
2
   B

2

S
2

A
3
   B

3

S
3

C
out

C
in

0                   0                   1                   10                   0                   1                   0

0

1                   1                   0                   1

???



4-bit Adder to 4-bit Subtractor

32

• How do we calculate 3 - 2 = 1?

• We know how to calculate 3 + (-2) = 1

• -2: !(0010) + 1 = 1101 + 1 = 1110

• 3 - 2 = 3 + (-2) = 3 + 1101
2
 + 1

A
0
   B

0

S
0

A
1
   B

1

S
1

A
2
   B

2

S
2

A
3
   B

3

S
3

C
out

C
in

0                   0                   1                   10                   0                   1                   0

0

1                   1                   0                   1



4-bit Adder to 4-bit Subtractor

33

• How do we calculate 3 - 2 = 1?

• We know how to calculate 3 + (-2) = 1

• -2: !(0010) + 1 = 1101 + 1 = 1110

• 3 - 2 = 3 + (-2) = 3 + 1101
2
 + 1

A
0
   B

0

S
0

A
1
   B

1

S
1

A
2
   B

2

S
2

A
3
   B

3

S
3

C
out

C
in

0                   0                   1                   10                   0                   1                   0

1

1                   1                   0                   1



4-bit Adder to 4-bit Subtractor

34

• How do we calculate 3 - 2 = 1?

• We know how to calculate 3 + (-2) = 1

• -2: !(0010) + 1 = 1101 + 1 = 1110

• 3 - 2 = 3 + (-2) = 3 + 1101
2
 + 1

A
0
   B

0

S
0

A
1
   B

1

S
1

A
2
   B

2

S
2

A
3
   B

3

S
3

C
out

C
in

0                   0                   1                   10                   0                   1                   0

1

1                   1                   0                   1



4-bit Adder to 4-bit Subtractor

35

• How do we calculate 3 - 2 = 1?

• We know how to calculate 3 + (-2) = 1

• -2: !(0010) + 1 = 1101 + 1 = 1110

• 3 - 2 = 3 + (-2) = 3 + 1101
2
 + 1

A
0
   B

0

S
0

A
1
   B

1

S
1

A
2
   B

2

S
2

A
3
   B

3

S
3

C
out

C
in

0                   0                   1                   10                   0                   1                   0

1

1                   1                   0                   1

1

1



4-bit Adder to 4-bit Subtractor

36

• How do we calculate 3 - 2 = 1?

• We know how to calculate 3 + (-2) = 1

• -2: !(0010) + 1 = 1101 + 1 = 1110

• 3 - 2 = 3 + (-2) = 3 + 1101
2
 + 1

A
0
   B

0

S
0

A
1
   B

1

S
1

A
2
   B

2

S
2

A
3
   B

3

S
3

C
out

C
in

0                   0                   1                   10                   0                   1                   0

1

1                   1                   0                   1

10

11



4-bit Adder to 4-bit Subtractor

37

• How do we calculate 3 - 2 = 1?

• We know how to calculate 3 + (-2) = 1

• -2: !(0010) + 1 = 1101 + 1 = 1110

• 3 - 2 = 3 + (-2) = 3 + 1101
2
 + 1

A
0
   B

0

S
0

A
1
   B

1

S
1

A
2
   B

2

S
2

A
3
   B

3

S
3

C
out

C
in

0                   0                   1                   10                   0                   1                   0

1

1                   1                   0                   1

10

1

0

11



4-bit Adder to 4-bit Subtractor

38

• How do we calculate 3 - 2 = 1?

• We know how to calculate 3 + (-2) = 1

• -2: !(0010) + 1 = 1101 + 1 = 1110

• 3 - 2 = 3 + (-2) = 3 + 1101
2
 + 1

A
0
   B

0

S
0

A
1
   B

1

S
1

A
2
   B

2

S
2

A
3
   B

3

S
3

C
out

C
in

0                   0                   1                   10                   0                   1                   0

1

1                   1                   0                   1

10

1

0

1

0

11

Overflow?



4-bit Adder to 4-bit Subtractor

39

• How do we calculate 3 - 2 = 1?

• We know how to calculate 3 + (-2) = 1

• -2: !(0010) + 1 = 1101 + 1 = 1110

• 3 - 2 = 3 + (-2) = 3 + 1101
2
 + 1

A
0
   B

0

S
0

A
1
   B

1

S
1

A
2
   B

2

S
2

A
3
   B

3

S
3

C
out

C
in

0                   0                   1                   10                   0                   1                   0

1

1                   1                   0                   1

10

1

0

1

0

11

Overflow?

No. Cin = Cout



4-bit Adder to 4-bit Subtractor

40

• Can we add and subtract with the same circuit?
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• Can we add and subtract with the same circuit?

• How can we disable the inverter?
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• Can we add and subtract with the same circuit?
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• So far, gates compute instantaneous
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• So far, gates compute instantaneous

• In reality, there is a delay, because it takes time to compute.
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• So far, gates compute instantaneous

• In reality, there is a delay, because it takes time to compute.

• Simple model: it takes 1 unit of time to propagate results 
through a 1-bit adder
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through a 1-bit adder
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• So far, gates compute instantaneous

• In reality, there is a delay, because it takes time to compute.

• Simple model: it takes 1 unit of time to propagate results 
through a 1-bit adder
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• So far, gates compute instantaneous

• In reality, there is a delay, because it takes time to compute.

• Simple model: it takes 1 unit of time to propagate results 
through a 1-bit adder
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• So far, gates compute instantaneous

• In reality, there is a delay, because it takes time to compute.

• Simple model: it takes 1 unit of time to propagate results 
through a 1-bit adder
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• So far, gates compute instantaneous

• In reality, there is a delay, because it takes time to compute.

• Simple model: it takes 1 unit of time to propagate results 
through a 1-bit adder
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• So far, gates compute instantaneous

• In reality, there is a delay, because it takes time to compute.

• Simple model: it takes 1 unit of time to propagate results 
through a 1-bit adder
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• So far, gates compute instantaneous

• In reality, there is a delay, because it takes time to compute.

• Simple model: it takes 1 unit of time to propagate results 
through a 1-bit adder
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• So far, gates compute instantaneous

• In reality, there is a delay, because it takes time to compute.

• Simple model: it takes 1 unit of time to propagate results 
through a 1-bit adder

A
0
   B

0

S
0

A
1
   B

1

S
1

A
2
   B

2

S
2

A
3
   B

3

S
3

C
out

C
in

1000

t = 1 → t=2
0                   0                   1                   11                   1                   0                   1

1

1111

stays the same!
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• So far, gates compute instantaneous

• In reality, there is a delay, because it takes time to compute.

• Simple model: it takes 1 unit of time to propagate results 
through a 1-bit adder
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needs to be recomputed
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• So far, gates compute instantaneous

• In reality, there is a delay, because it takes time to compute.

• Simple model: it takes 1 unit of time to propagate results 
through a 1-bit adder
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• So far, gates compute instantaneous

• In reality, there is a delay, because it takes time to compute.

• Simple model: it takes 1 unit of time to propagate results 
through a 1-bit adder
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stays the same!
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• So far, gates compute instantaneous

• In reality, there is a delay, because it takes time to compute.

• Simple model: it takes 1 unit of time to propagate results 
through a 1-bit adder
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• So far, gates compute instantaneous

• In reality, there is a delay, because it takes time to compute.

• Simple model: it takes 1 unit of time to propagate results 
through a 1-bit adder
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• So far, gates compute instantaneous

• In reality, there is a delay, because it takes time to compute.

• Simple model: it takes 1 unit of time to propagate results 
through a 1-bit adder
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• So far, gates compute instantaneous

• In reality, there is a delay, because it takes time to compute.

• Simple model: it takes 1 unit of time to propagate results 
through a 1-bit adder
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needs to be recomputed
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• So far, gates compute instantaneous

• In reality, there is a delay, because it takes time to compute.

• Simple model: it takes 1 unit of time to propagate results 
through a 1-bit adder
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• So far, gates compute instantaneous

• In reality, there is a delay, because it takes time to compute.

• Simple model: it takes 1 unit of time to propagate results 
through a 1-bit adder
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• So far, gates compute instantaneous

• In reality, there is a delay, because it takes time to compute.

• Simple model: it takes 1 unit of time to propagate results 
through a 1-bit adder
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• So far, gates compute instantaneous

• In reality, there is a delay, because it takes time to compute.

• Simple model: it takes 1 unit of time to propagate results 
through a 1-bit adder
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• So far, gates compute instantaneous

• In reality, there is a delay, because it takes time to compute.

• Simple model: it takes 1 unit of time to propagate results 
through a 1-bit adder
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needs to be recomputed
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• So far, gates compute instantaneous

• In reality, there is a delay, because it takes time to compute.

• Simple model: it takes 1 unit of time to propagate results 
through a 1-bit adder
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• No more changes to the adder inputs → we reached a fixed point.
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Cout S

t = 0 ? ?

t = 1 0 11112

t = 2 0 11012

t = 3 0 10012

t = 4 1 00012

t = 5 1 00012



4-bit Adder: Outputs over time

76

Cout S

t = 0 ? ?

t = 1 0 11112

t = 2 0 11012

t = 3 0 10012

t = 4 1 00012

t = 5 1 00012

● Lower bits are ready first.
● The correct value is only available 

after 4 time units.
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Cout S

t = 0 ? ?

t = 1 0 11112

t = 2 0 11012

t = 3 0 10012

t = 4 1 00012

t = 5 1 00012

● Lower bits are ready first.
● The correct value is only available 

after 4 time units.
● In reality, the delays are more 

complicated than our model.
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Cout S

t = 0 ? ?

t = 1 0 11112

t = 2 0 11012

t = 3 0 10012

t = 4 1 00012

t = 5 1 00012

● Lower bits are ready first.
● The correct value is only available 

after 4 time units.
● In reality, the delays are more 

complicated than our model.
● We assumed that all inputs to the 

4-bit adder arrive at t = 0.
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Cout S

t = 0 ? ?

t = 1 0 11112

t = 2 0 11012

t = 3 0 10012

t = 4 1 00012

t = 5 1 00012

● Lower bits are ready first.
● The correct value is only available 

after 4 time units.
● In reality, the delays are more 

complicated than our model.
● We assumed that all inputs to the 

4-bit adder arrive at t = 0.
● Need state to synchronize.



How can we store information in a 
binary circuit?
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Idea: use feedback
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Idea: use feedback
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1



Idea: use feedback
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0



Idea: use feedback
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0

We are storing a charge. This is how your DRAM main memory works.



Idea: use feedback
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0

We are storing a charge. This is how your DRAM main memory works.
Problem: Charge disappears over time.



Use Active Element to Maintain Charge?
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0



Use Active Element to Maintain Charge?
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0
1



Use Active Element to Maintain Charge?
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1
1



Use Active Element to Maintain Charge?
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1
0



Use Active Element to Maintain Charge?
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1
0

We just built an 
oscillator!



Bi-Stable Device
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1
0

Now there is an 
equilibrium.



Bi-Stable Device
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0
0

Now there is an 
equilibrium.



Bi-Stable Device
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0
1

Now there is an 
equilibrium.



Bi-Stable Device
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0
1

How do we 
actually change 

the value?



Set-Reset Latch
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B

 

Q

AS

R

Add two OR gates.



Set-Reset Latch
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B

 

Q

AS

R

Add two OR gates.

S R Q ¬Q
0 0
0 1
1 0
1 1



S=0

Set-Reset Latch
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B

 

Q R=1

S R Q ¬Q
0 0
0 1
1 0
1 1



S=0

Set-Reset Latch
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B

 

Q R=1

S R Q ¬Q
0 0
0 1
1 0
1 1

Where do we start our 
analysis?
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Set-Reset Latch
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Q R=1

S R Q ¬Q
0 0
0 1
1 0
1 1

Where do we start our 
analysis?
Remember: 1 ∨ a = 1
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Set-Reset Latch
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B

 

Q R=1

S R Q ¬Q
0 0
0 1
1 0
1 1

Where do we start our 
analysis?
Remember: 1 ∨ a = 1
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Set-Reset Latch
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Q = 0 R=1

S R Q ¬Q
0 0
0 1 0
1 0
1 1

Where do we start our 
analysis?
Remember: 1 ∨ a = 1
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Set-Reset Latch
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Q = 0 R=1

S R Q ¬Q
0 0
0 1 0
1 0
1 1

Where do we start our 
analysis?
Remember: 1 ∨ a = 1

0



S=0

Set-Reset Latch
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Q = 0 R=1

S R Q ¬Q
0 0
0 1 0 1
1 0
1 1

Where do we start our 
analysis?
Remember: 1 ∨ a = 1

0
= 1



S=0

Set-Reset Latch
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B

 

Q R=1

S R Q ¬Q
0 0
0 1
1 0
1 1

Alternative: Just guess!
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Set-Reset Latch
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Q = 1?
R=1

S R Q ¬Q
0 0
0 1
1 0
1 1

Alternative: Just guess!
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Set-Reset Latch
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Q = 1?
R=1

S R Q ¬Q
0 0
0 1
1 0
1 1

Alternative: Just guess!

1



S=0

Set-Reset Latch
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Q = 1?
R=1

S R Q ¬Q
0 0
0 1
1 0
1 1

Alternative: Just guess!

1
= 0



S=0

Set-Reset Latch
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Q = 1?
R=1

S R Q ¬Q
0 0
0 1
1 0
1 1

Alternative: Just guess!

1
= 0

1
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Set-Reset Latch
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Q = 0
R=1

S R Q ¬Q
0 0
0 1
1 0
1 1

Alternative: Just guess!

1
= 0

1



S=0

Set-Reset Latch
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Q = 0
R=1

S R Q ¬Q
0 0
0 1
1 0
1 1

Alternative: Just guess!

0
= 0

1



S=0

Set-Reset Latch
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Q = 0
R=1

S R Q ¬Q
0 0
0 1
1 0
1 1

Alternative: Just guess!

0
= 1

1



S=0

Set-Reset Latch
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Q = 0
R=1

S R Q ¬Q
0 0
0 1 0 1
1 0
1 1

Alternative: Just guess!
S = 0, R = 1 is a stable state.
We always converge to the same state.

0
= 1

1
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Set-Reset Latch
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Q R=0

S R Q ¬Q
0 0
0 1 0 1
1 0
1 1

0
=

PollEv.com/cs3410

https://pollev.com/cs3410


S=1

Set-Reset Latch
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Q R=0

S R Q ¬Q
0 0
0 1 0 1
1 0
1 1

1
=

Where do we start our 
analysis?
Remember: 1 ∨ a = 1
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Set-Reset Latch
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Q R=0

S R Q ¬Q
0 0
0 1 0 1
1 0
1 1

1
= 0



S=1

Set-Reset Latch
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Q R=0

S R Q ¬Q
0 0
0 1 0 1
1 0
1 1

1
= 0

0



S=1

Set-Reset Latch
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Q=1 R=0

S R Q ¬Q
0 0
0 1 0 1
1 0
1 1

1
= 0

0



S=1

Set-Reset Latch
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Q=1 R=0

S R Q ¬Q
0 0
0 1 0 1
1 0 1 0
1 1

1
= 0

0



S=0

Set-Reset Latch
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Q R=0

S R Q ¬Q
0 0
0 1 0 1
1 0 1 0
1 1
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Set-Reset Latch
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Q R=0

S R Q ¬Q
0 0
0 1 0 1
1 0 1 0
1 1

Our “OR trick” no longer works.
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Q R=0

S R Q ¬Q
0 0
0 1 0 1
1 0 1 0
1 1

Our “OR trick” no longer works.
Remember: 0 ∨ a = a
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Set-Reset Latch
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Q R=0

S R Q ¬Q
0 0
0 1 0 1
1 0 1 0
1 1

Our “OR trick” no longer works.
Remember: 0 ∨ a = a
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Set-Reset Latch
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Q R=0

S R Q ¬Q
0 0
0 1 0 1
1 0 1 0
1 1

Our “OR trick” no longer works.
Remember: 0 ∨ a = a



S=0

Set-Reset Latch
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Q R=0

S R Q ¬Q
0 0
0 1 0 1
1 0 1 0
1 1

Our “OR trick” no longer works.
Remember: 0 ∨ a = a

We are 
maintaining state!
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Q R=0

S R Q ¬Q
0 0 Qt-1 ¬Qt-

1
0 1 0 1
1 0 1 0
1 1

We are 
maintaining state!
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Set-Reset Latch
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Q R

S R Q ¬Q
0 0 Qt-1 ¬Qt-

1
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1 0 1 0
1 1
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Set-Reset Latch
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Q R

S R Q ¬Q
0 0 Qt-1 ¬Qt-

1
0 1 0 1
1 0 1 0
1 1

Retain

Reset

Set
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Set-Reset Latch
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Q R

S R Q ¬Q
0 0 Qt-1 ¬Qt-

1
0 1 0 1
1 0 1 0
1 1

Retain

Reset

Set

What does this 
row do?



S=1

Set-Reset Latch
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Q R=1

S R Q ¬Q
0 0 Qt-1 ¬Qt-

1
0 1 0 1
1 0 1 0
1 1

Retain

Reset

Set

What does this 
row do?

We know: 1 ∨ a = 1

1 1
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Q=0 R=1

S R Q ¬Q
0 0 Qt-1 ¬Qt-

1
0 1 0 1
1 0 1 0
1 1

Retain

Reset

Set

What does this 
row do?

We know: 1 ∨ a = 1

1 1

= 0
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Q=0 R=1

S R Q ¬Q
0 0 Qt-1 ¬Qt-

1
0 1 0 1
1 0 1 0
1 1

Retain

Reset

Set

So now Q = ¬Q?

We know: 1 ∨ a = 1

1 1

= 0
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Set-Reset Latch
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Q=0 R=1

S R Q ¬Q
0 0 Qt-1 ¬Qt-

1
0 1 0 1
1 0 1 0
1 1

Retain

Reset

Set
What if we try to 
go back to S = 0 

and R = 0?

1 1

= 0
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Set-Reset Latch
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Q=0 R=0

S R Q ¬Q
0 0 Qt-1 ¬Qt-

1
0 1 0 1
1 0 1 0
1 1

Retain

Reset

Set
What if we try to 
go back to S = 0 

and R = 0?

1 1

= 0



S=0

Set-Reset Latch
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Q=0 R=0

S R Q ¬Q
0 0 Qt-1 ¬Qt-

1
0 1 0 1
1 0 1 0
1 1

Retain

Reset

Set
What if we try to 
go back to S = 0 

and R = 0?

0 0

= 0
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Set-Reset Latch
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Q=1 R=0

S R Q ¬Q
0 0 Qt-1 ¬Qt-

1
0 1 0 1
1 0 1 0
1 1

Retain

Reset

Set
What if we try to 
go back to S = 0 

and R = 0?

0 0

= 1



S=0

Set-Reset Latch
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Q=0 R=0

S R Q ¬Q
0 0 Qt-1 ¬Qt-

1
0 1 0 1
1 0 1 0
1 1

Retain

Reset

Set
What if we try to 
go back to S = 0 

and R = 0?

1 1

= 0
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Set-Reset Latch
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Q=1 R=0

S R Q ¬Q
0 0 Qt-1 ¬Qt-

1
0 1 0 1
1 0 1 0
1 1

Retain

Reset

Set

Did we build an 
oscillator again?

0 0

= 1
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Q=1 R=0

S R Q ¬Q
0 0 Qt-1 ¬Qt-

1
0 1 0 1
1 0 1 0
1 1

Retain

Reset

Set

Did we build an 
oscillator again?

0 0

= 1

In theory: Yes.
In practice: we will end up with  
stable feedback, but unpredictable if 
Q = 0 or Q = 1.
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Q=1 R=0

S R Q ¬Q
0 0 Qt-1 ¬Qt-

1
0 1 0 1
1 0 1 0
1 1

Retain

Reset

Set

Did we build an 
oscillator again?

0 0

= 1

In theory: Yes.
In practice: we will end up with  
stable feedback, but unpredictable if 
Q = 0 or Q = 1.

Forbidden



Next Goal
How do we avoid the forbidden state of S-R Latch?
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Fourth Attempt: (Unclocked) D Latch
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Fourth Attempt: (Unclocked) D Latch
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D S

R

 

Q



Fourth Attempt: (Unclocked) D Latch
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Fill in the truth table?

D
S

R

Q

Q

D

D Q
0
1

S

R

 

Q



Fourth Attempt: (Unclocked) D Latch
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Fill in the truth table?

D
S

R

Q

Q

D

D Q ¬Q
0 0 1

1 1 0

S

R

 

Q



Fourth Attempt: (Unclocked) D Latch
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D
S

R

Q

Q

D

D Q ¬Q
0 0 1

1 1 0

S

R

 

Q
Cannot enter an undefined state

When D changes, Q changes
– … immediately (…after a delay of 2 Ors and 2 NOTs)

We aren’t really storing anything anymore!



Takeaway
Set-Reset (SR) Latch can store one bit and we can change the value of 
the stored bit.  But, SR Latch has a forbidden state.

(Unclocked) D Latch can store and change a bit like an SR Latch while 
avoiding the forbidden state.
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Next Goal
How do we coordinate state changes to a D Latch?
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Aside: Clocks
Clock helps coordinate state changes

•Usually generated by an oscillating crystal
•Fixed period
•Frequency = 1/period

148

1

0



Aside: Clocks
Clock helps coordinate state changes

•Usually generated by an oscillating crystal
•Fixed period
•Frequency = 1/period
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1

0

clock
high

clock
low



Aside: Clocks
Clock helps coordinate state changes

•Usually generated by an oscillating crystal
•Fixed period
•Frequency = 1/period

150

1

0

clock
period

clock
high

clock
low



Aside: Clocks
Clock helps coordinate state changes

•Usually generated by an oscillating crystal
•Fixed period
•Frequency = 1/period

151

1

0

clock
period

clock
high

clock
low

rising
edgefalling

edge



Round 2: D Latch (1)
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S

R

D Q

 

D Q ¬Q

0
1

D Q
 C

Set

Reset

• Inverter prevents SR 
Latch from entering 1,1 
state



Round 2: D Latch (1)
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S

R

D Q

 

D Q ¬Q

0 0 1

1 1 0
D Q

 C

Set

Reset

• Inverter prevents SR 
Latch from entering 1,1 
state



Round 2: D Latch (1)
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S

R

D Q

 

D Q ¬Q

0 0 1

1 1 0
D Q

 C

Set

Reset

• Inverter prevents SR 
Latch from entering 1,1 
state



Round 2: D Latch (1)
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D Q ¬Q

0 0 1

1 1 0
D Q

 C

Set

Reset

• Inverter prevents SR 
Latch from entering 1,1 
state

S

R

D Q

 C



Round 2: D Latch (1)
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D Q ¬Q

0 0 1

1 1 0
D Q

 C

Set

Reset

• Inverter prevents SR 
Latch from entering 1,1 
state

S

R

D Q

 C

AND gate forces a 0 
when C = 0.



Round 2: D Latch (1)
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D Q ¬Q

0 0 1

1 1 0
D Q

 C

Set

Reset

• Inverter prevents SR 
Latch from entering 1,1 
state

S

R

D Q

 C

AND gate forces a 0 
when C = 0.

Remember: 0 ∧ a = 0



Round 2: D Latch (1)
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C D Q ¬Q

0 0 Q
t-1

¬Q
t-1

0 1 Q
t-1

¬Q
t-1

D Q
 C

Set
Hold

• Inverter prevents SR 
Latch from entering 1,1 
state

S

R

D Q

 C

AND gate forces a 0 
when C = 0.

Remember: 0 ∧ a = 0

Hold



Round 2: D Latch (1)
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C D Q ¬Q

0 0 Q
t-1

¬Q
t-1

0 1 Q
t-1

¬Q
t-1

D Q
 C

Hold

• Inverter prevents SR 
Latch from entering 1,1 
state

S

R

D Q

 C

AND gate lets D pass 
when C = 1.

Remember: 1 ∧ a = a

Hold



Round 2: D Latch (1)
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C D Q ¬Q

0 0 Q
t-1

¬Q
t-1

0 1 Q
t-1

¬Q
t-1

1 0 0 1

1 1 1 0

D Q
 C

Hold

• Inverter prevents SR 
Latch from entering 1,1 
state

S

R

D Q

 C

AND gate lets D pass 
when C = 1.

Remember: 1 ∧ a = a

Hold

Set

Reset



Round 2: D Latch (1)
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C D Q ¬Q

0 0 Q
t-1

¬Q
t-1

0 1 Q
t-1

¬Q
t-1

1 0 0 1

1 1 1 0

D Q
 C

Hold

• Level sensitive
• Inverter prevents SR 
Latch from entering 1,1 
state

S

R

D Q

 C

Hold

Set

Reset



Round 2: D Latch (1)
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C D Q ¬Q

0 0 Q
t-1

¬Q
t-1

0 1 Q
t-1

¬Q
t-1

1 0 0 1

1 1 1 0

D Q
 C

Hold

• Level sensitive
• Inverter prevents SR 
Latch from entering 1,1 
state

S

R

D Q

 C

Hold

Set

Reset

C = 1, D Latch transparent:
   set/reset (according to D)
C = 0, D Latch opaque:
   keep state (ignore D)



PollEV Question
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clk

D

Q

clk D Q
0 0 Q

0 1 Q

1 0 0 1

1 1 1 0

A B

What is the value of Q at A & B?
a) A = 0, B = 0
b) A = 0, B = 1
c) A = 1, B = 0
d) A = 1, B = 1

D Q
 clk



PollEV Question
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clk

D

Q

clk D Q
0 0 Q

0 1 Q

1 0 0 1

1 1 1 0

A B

What is the value of Q at A & B?
a) A = 0, B = 0
b) A = 0, B = 1
c) A = 1, B = 0
d) A = 1, B = 1

D Q
 clk



PollEV Question
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clk

D

Q

clk D Q
0 0 Q

0 1 Q

1 0 0 1

1 1 1 0

A B

What is the value of Q at A & B?
a) A = 0, B = 0
b) A = 0, B = 1
c) A = 1, B = 0
d) A = 1, B = 1

D Q
 clk



PollEV Question
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clk

D

Q

clk D Q
0 0 Q

0 1 Q

1 0 0 1

1 1 1 0

A B

What is the value of Q at A & B?
a) A = 0, B = 0
b) A = 0, B = 1
c) A = 1, B = 0
d) A = 1, B = 1

D Q
 clk



PollEV Question
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clk

D

Q

clk D Q
0 0 Q

0 1 Q

1 0 0 1

1 1 1 0

A B

What is the value of Q at A & B?
a) A = 0, B = 0
b) A = 0, B = 1
c) A = 1, B = 0
d) A = 1, B = 1

D Q
 clk



PollEV Question
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clk

D

Q

clk D Q
0 0 Q

0 1 Q

1 0 0 1

1 1 1 0

A B

What is the value of Q at A & B?
a) A = 0, B = 0
b) A = 0, B = 1
c) A = 1, B = 0
d) A = 1, B = 1

D Q
 clk



PollEV Question
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clk

D

Q

clk D Q
0 0 Q

0 1 Q

1 0 0 1

1 1 1 0

A B

D Q
 clk

Level Sensitive D Latch
Clock high:
   set/reset (according to D)
Clock low:
   keep state (ignore D)



Round 3: D Flip-Flop
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• Edge-Triggered
• Data captured when 

clock high
• Output changes only 

on falling edges

D Q
 

D Q
 C C

X Q
 

D

clk
L
1

L
2



Round 3: D Flip-Flop
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Clock = 1: L1 transparent
 L2 opaque

D Q D Q
C C

X QD
clk 01

L
1

L
2

X



Round 3: D Flip-Flop
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Clock = 1: L1 transparent
 L2 opaque

D Q D Q
C C

X QD
clk 01

L
1

L
2

XD

D passes through L1 
to X

X



Round 3: D Flip-Flop
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Clock = 1: L1 transparent
 L2 opaque

D Q D Q
C C

X QD
clk 01

L
1

L
2

XD

D passes through L1 
to X

X



Round 3: D Flip-Flop
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Clock = 1: L1 transparent
 L2 opaque

D Q D Q
C C

X QD
clk 01

L
1

L
2

XD

D passes through L1 
to X

X

Clock = 0: L1 opaque 
 L2 transparent D Q D Q

C C
X QD

clk 10
L
1

L
2

X



Round 3: D Flip-Flop
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Clock = 1: L1 transparent
 L2 opaque

D Q D Q
C C

X QD
clk 01

L
1

L
2

XD

D passes through L1 
to X

X

Clock = 0: L1 opaque 
 L2 transparent D Q D Q

C C
X QD

clk 10
L
1

L
2

X Q

X passes through L2 to 
Q

X



Round 3: D Flip-Flop
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Clock = 1: L1 transparent
 L2 opaque

D Q D Q
C C

X QD
clk 01

L
1

L
2

XD

D passes through L1 
to X

X

Clock = 0: L1 opaque 
 L2 transparent D Q D Q

C C
X QD

clk 10
L
1

L
2

X Q

X passes through L2 to 
Q

X

Sample data at the falling 
CLK edge (1🡪0)



PollEV Question – start here
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clk

D

X

Q

What is the value of Q 
at A & B?
a) A = 0, B = 0
b) A = 0, B = 1
c) A = 1, B = 0
d) A = 1, B = 1

BA

D Q D Q

C C
X QD

clk
L
1

L
2



PollEV Question – start here

178

clk

D

X

Q

What is the value of Q 
at A & B?
a) A = 0, B = 0
b) A = 0, B = 1
c) A = 1, B = 0
d) A = 1, B = 1

BA

D Q D Q

C C
X QD

clk
L
1

L
2



Edge-Triggered D Flip-Flop
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D Flip-Flop
• Edge-Triggered
• Data captured when 

clock is high
• Output changes only on 

falling edges

clk

D

X

Q BA

D Q D Q

C C
X QD

clk
L
1

L
2

   0

0

1

01



Edge-Triggered D Flip-Flop
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D Flip-Flop
• Edge-Triggered
• Data captured when 

clock is high
• Output changes only on 

falling edges

clk

D

X

Q BA

D Q D Q

C C
X QD

clk
L
1

L
2

   0

0

1

01



Edge-Triggered D Flip-Flop
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D Flip-Flop
• Edge-Triggered
• Data captured when 

clock is high
• Output changes only on 

falling edges

clk

D

X

Q BA

D Q D Q

C C
X QD

clk
L
1

L
2

   0

0

1

01



Edge-Triggered D Flip-Flop
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D Flip-Flop
• Edge-Triggered
• Data captured when 

clock is high
• Output changes only on 

falling edges

clk

D

X

Q BA

D Q D Q

C C
X QD

clk
L
1

L
2

   0

0

1

01



Edge-Triggered D Flip-Flop
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D Flip-Flop
• Edge-Triggered
• Data captured when 

clock is high
• Output changes only on 

falling edges

clk

D

X

Q BA

D Q D Q

C C
X QD

clk
L
1

L
2

   0

0

1

01



Edge-Triggered D Flip-Flop

184

D Flip-Flop
• Edge-Triggered
• Data captured when 

clock is high
• Output changes only on 

falling edges

clk

D

X

Q BA

D Q D Q

C C
X QD

clk
L
1

L
2

   0

0

1

01



Edge-Triggered D Flip-Flop
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D Flip-Flop
• Edge-Triggered
• Data captured when 

clock is high
• Output changes only on 

falling edges

clk

D

X

Q BA

D Q D Q

C C
X QD

clk
L
1

L
2

   0

0

1

01



Building a D Flip Flop (DFF)
Step 1: Create an SR Latch
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DFF

R

S

QSet Reset Q
0 0 Q
0 1 0

1 0 1

1 1 ?



Building a D Flip Flop (DFF)
Step 1: Create an SR Latch
Step 2: Create a D Latch

187

DFF

R

S

D Q

C

QClk Data Q

0 0 Q

0 1 Q

1 0 0

1 1 1



Building a D Flip Flop (DFF)
Step 1: Create an SR Latch
Step 2: Create a D Latch
Step 3: Duplicate the D Latch, chain together

188

DFF

R

S

D Q

C

QR

S

D Q

C

QD

c

l

k

Q



Level sensitive
• State changes when clock is high (or low)

Clock Disciplines

189



Clock Disciplines
Level sensitive

• State changes when clock is high (or low)

Edge triggered
• State changes at clock edge

190

positive edge-triggered

negative edge-triggered



Clock Methodology
Clock Methodology
• Negative edge, synchronous

Edge-Triggered 🡪 signals must be stable near falling edge
“near” = before and after

       tsetup                  thold

191

clk

compute save

tsetup thold

compute save compute

tcombinational



Round 3: D Flip-Flop
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Clock = 1: L1 transparent
 L2 opaque

D Q D Q
C C

X QD
clk 01

L
1

L
2

XD

D passes through L1 
to X

X

Clock = 0: L1 opaque 
 L2 transparent D Q D Q

C C
X QD

clk 10
L
1

L
2

X Q

X passes through L2 to 
Q

X

Sample data at the falling 
CLK edge (1🡪0)



Clock Methodology
Clock Methodology
• Negative edge, synchronous

Edge-Triggered 🡪 signals must be stable near falling edge
“near” = before and after

       tsetup                  thold
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clk

compute save

tsetup thold

compute save compute

tcombinational



Takeaway

194

Set-Reset (SR) Latch can store one bit and we can change the value of the 
stored bit.  But, SR Latch has a forbidden state.

(Unclocked) D Latch can store and change a bit like an SR Latch while 
avoiding a forbidden state.

An Edge-Triggered D Flip-Flip stores one bit.  The bit can be changed in a 
synchronized fashion on the edge of a clock signal.



Next Goal
How do we store more than one bit, N bits?

195
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QD
clk

Register
• D flip-flops in parallel 

Registers



Registers

197

Register
• D flip-flops in parallel 
• shared clock
• extra clocked inputs:

write_enable, reset, …

clk

D0

D3

D1

D2

4 4

4-bit

reg

clk



Registers
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Register
• D flip-flops in parallel 
• shared clock
• extra clocked inputs:

write_enable, reset, …

clk

D0

D3

D1

D2

64 64

64-bit

reg

clk



Takeaway
Set-Reset (SR) Latch can store one bit and we can change the value of 
the stored bit.  But, SR Latch has a forbidden state.

(Unclocked) D Latch can store and change a bit like an SR Latch while 
avoiding a forbidden state.

An Edge-Triggered D Flip-Flip stores one bit.  The bit can be changed 
in a synchronized fashion on the edge of a clock signal.

An N-bit register stores N-bits.  It is created with N D-Flip-Flops in 
parallel along with a shared clock.
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