
Review: Adder Circuit
CS 3410: Computer System Organization and Programming

Fall 2025

1

1-bit Half Adder

2

?

A B

S

C
out

A B Cout S
0 0
0 1
1 0
1 1

S = one input equals 1
C

out
 = two inputs equal 1

• Adds two 1-bit numbers
• Computes 1-bit result and 1-bit carry-out
• No carry-in

1-bit Half Adder

3

?

A B

S

C
out

A B Cout S
0 0
0 1
1 0
1 1

 0
+ 0

 0
 0

 0

 0

S = one input equals 1
C

out
 = two inputs equal 1

• Adds two 1-bit numbers
• Computes 1-bit result and 1-bit carry-out
• No carry-in

1-bit Half Adder

4

?

A B

S

C
out

A B Cout S
0 0
0 1
1 0
1 1

 0
+ 0

 0
+ 1

 0
 0

 0

 0
 1 1

 0

 0
S = one input equals 1
C

out
 = two inputs equal 1

• Adds two 1-bit numbers
• Computes 1-bit result and 1-bit carry-out
• No carry-in

1-bit Half Adder

5

?

A B

S

C
out

A B Cout S
0 0
0 1
1 0
1 1

 0
+ 0

 0
+ 1

 1
+ 0

 0
 0

 0

 0
 1 1

 0

 0 1
 1

 0

 0

S = one input equals 1
C

out
 = two inputs equal 1

• Adds two 1-bit numbers
• Computes 1-bit result and 1-bit carry-out
• No carry-in

1-bit Half Adder

6

?

A B

S

C
out

A B Cout S
0 0
0 1
1 0
1 1

 0
+ 0

 0
+ 1

 1
+ 0

 1
+ 1

 0
 0

 0

 0
 1 1

 0

 0 1
 1

 0

 0
 0

 0

 1

 1
S = one input equals 1
C

out
 = two inputs equal 1

• Adds two 1-bit numbers
• Computes 1-bit result and 1-bit carry-out
• No carry-in

1-bit Half Adder

?

A B

S

C
out

A B Cout S
0 0
0 1
1 0
1 1

 0 0
 1 0
 1 0
 0 1

C
out

A B

S

• Adds two 1-bit numbers
• Computes 1-bit result and 1-bit carry-out
• No carry-in

1-bit Half Adder

8

?

A B

S

C
out

A B Cout S
0 0
0 1
1 0
1 1

 0 0
 1 0
 1 0
 0 1

 = A ⊕ B

C
out

A B

S

C
out

A B

S

• Adds two 1-bit numbers
• Computes 1-bit result and 1-bit carry-out
• No carry-in

1-bit Full Adder

9

?

S

C
out

A B

C
in

A B Cin Cout S
0 0 0
0 0 1
0 1 0
0 1 1
1 0 0
1 0 1
1 1 0
1 1 1

• Adds three 1-bit numbers
• Computes 1-bit result and 1-bit carry-out
• Can be cascaded

• Fill in Truth Table
• Create Sum-of-Product Form
• Draw the Circuits

1-bit Full Adder

10

?

S

C
out

A B

C
in

• Adds three 1-bit numbers
• Computes 1-bit result and 1-bit carry-out
• Can be cascaded

• Fill in Truth Table
• Create Sum-of-Product Form
• Draw the Circuits

A B Cin Cout S
0 0 0 0 0
0 0 1
0 1 0
0 1 1
1 0 0
1 0 1
1 1 0
1 1 1

0 + 0 + 0 = 0

A B Cin Cout S
0 0 0 0 0
0 0 1 0 1
0 1 0 0 1
0 1 1
1 0 0 0 1
1 0 1
1 1 0
1 1 1

1-bit Full Adder

11

?

S

C
out

A B

C
in

• Adds three 1-bit numbers
• Computes 1-bit result and 1-bit carry-out
• Can be cascaded

• Fill in Truth Table
• Create Sum-of-Product Form
• Draw the Circuits

1 + 0 + 0 = 1

A B Cin Cout S
0 0 0 0 0
0 0 1 0 1
0 1 0 0 1
0 1 1 1 0
1 0 0 0 1
1 0 1 1 0
1 1 0 1 0
1 1 1

1-bit Full Adder

12

?

S

C
out

A B

C
in

• Adds three 1-bit numbers
• Computes 1-bit result and 1-bit carry-out
• Can be cascaded

• Fill in Truth Table
• Create Sum-of-Product Form
• Draw the Circuits

1 + 1 + 0 = 210 = 102

A B Cin Cout S
0 0 0 0 0
0 0 1 0 1
0 1 0 0 1
0 1 1 1 0
1 0 0 0 1
1 0 1 1 0
1 1 0 1 0
1 1 1 1 1

1-bit Full Adder

13

?

S

C
out

A B

C
in

• Adds three 1-bit numbers
• Computes 1-bit result and 1-bit carry-out
• Can be cascaded

• Fill in Truth Table
• Create Sum-of-Product Form
• Draw the Circuits

1 + 1 + 1 = 310 = 112

A B Cin Cout S
0 0 0 0 0
0 0 1 0 1
0 1 0 0 1
0 1 1 1 0
1 0 0 0 1
1 0 1 1 0
1 1 0 1 0
1 1 1 1 1

1-bit Full Adder

14

?

S

C
out

A B

C
in

• Adds three 1-bit numbers
• Computes 1-bit result and 1-bit carry-out
• Can be cascaded

• Fill in Truth Table
• Create Sum-of-Product Form
• Draw the Circuits

A B Cin Cout S
0 0 0 0 0
0 0 1 0 1
0 1 0 0 1
0 1 1 1 0
1 0 0 0 1
1 0 1 1 0
1 1 0 1 0
1 1 1 1 1

1-bit Full Adder

15

?

S

C
out

A B

C
in

• Adds three 1-bit numbers
• Computes 1-bit result and 1-bit carry-out
• Can be cascaded

• Fill in Truth Table
• Create Sum-of-Product Form
• Draw the Circuits

16

C
out

S

A B

C
in

A B Cin Cout S
0 0 0 0 0
0 0 1 0 1
0 1 0 0 1
0 1 1 1 0
1 0 0 0 1
1 0 1 1 0
1 1 0 1 0
1 1 1 1 1

1-bit Full Adder

?

S

C
out

A B

C
in

4-bit Adder

17

• Adds two 4-bit numbers, along with carry-in

• Computes 4-bit result and carry out

• 3 + 2 = 5

• Carry-out 🡪 result > 4 bits

A
0
 B

0

S
0

A
1
 B

1

S
1

A
2
 B

2

S
2

A
3
 B

3

S
3

C
out

C
in

0 0 1 10 0 1 0

0

4-bit Adder

18

• Adds two 4-bit numbers, along with carry-in

• Computes 4-bit result and carry out

• 3 + 2 = 5

• Carry-out 🡪 result > 4 bits

A
0
 B

0

S
0

A
1
 B

1

S
1

A
2
 B

2

S
2

A
3
 B

3

S
3

C
out

C
in

0 0 1 10 0 1 0

1

00

4-bit Adder

19

• Adds two 4-bit numbers, along with carry-in

• Computes 4-bit result and carry out

• 3 + 2 = 5

• Carry-out 🡪 result > 4 bits

A
0
 B

0

S
0

A
1
 B

1

S
1

A
2
 B

2

S
2

A
3
 B

3

S
3

C
out

C
in

0 0 1 10 0 1 0

1

0

0

01

4-bit Adder

20

• Adds two 4-bit numbers, along with carry-in

• Computes 4-bit result and carry out

• 3 + 2 = 5

• Carry-out 🡪 result > 4 bits

A
0
 B

0

S
0

A
1
 B

1

S
1

A
2
 B

2

S
2

A
3
 B

3

S
3

C
out

C
in

0 0 1 10 0 1 0

1

0

0

0

1

10

4-bit Adder

21

• Adds two 4-bit numbers, along with carry-in

• Computes 4-bit result and carry out

• 3 + 2 = 5

• Carry-out 🡪 result > 4 bits

A
0
 B

0

S
0

A
1
 B

1

S
1

A
2
 B

2

S
2

A
3
 B

3

S
3

C
out

C
in

0 0 1 10 0 1 0

1

0

0

0

1

1

0

00

4-bit Adder to 4-bit Subtractor

22

• What if we want to subtract instead?

A
0
 B

0

S
0

A
1
 B

1

S
1

A
2
 B

2

S
2

A
3
 B

3

S
3

C
out

C
in

0 0 1 10 0 1 0

0

4-bit Adder to 4-bit Subtractor

23

• What if we want to subtract instead?

• How do we calculate 3 - 2 = 1?

A
0
 B

0

S
0

A
1
 B

1

S
1

A
2
 B

2

S
2

A
3
 B

3

S
3

C
out

C
in

0 0 1 10 0 1 0

0

4-bit Adder to 4-bit Subtractor

24

• What if we want to subtract instead?

• How do we calculate 3 - 2 = 1?

• We know how to calculate 3 + (-2) = 1

A
0
 B

0

S
0

A
1
 B

1

S
1

A
2
 B

2

S
2

A
3
 B

3

S
3

C
out

C
in

0 0 1 10 0 1 0

0

4-bit Adder to 4-bit Subtractor

25

• What if we want to subtract instead?

• How do we calculate 3 - 2 = 1?

• We know how to calculate 3 + (-2) = 1

• How do we negate a two’s complement number?

A
0
 B

0

S
0

A
1
 B

1

S
1

A
2
 B

2

S
2

A
3
 B

3

S
3

C
out

C
in

0 0 1 10 0 1 0

0

4-bit Adder to 4-bit Subtractor

26

• What if we want to subtract instead?

• How do we calculate 3 - 2 = 1?

• We know how to calculate 3 + (-2) = 1

• How do we negate a two’s complement number?

• -2: !(0010) + 1 = 1101 + 1 = 1110

A
0
 B

0

S
0

A
1
 B

1

S
1

A
2
 B

2

S
2

A
3
 B

3

S
3

C
out

C
in

0 0 1 10 0 1 0

0

4-bit Adder to 4-bit Subtractor

27

• What if we want to subtract instead?

• How do we calculate 3 - 2 = 1?

• We know how to calculate 3 + (-2) = 1

• How do we negate a two’s complement number?

• -2: !(0010) + 1 = 1101 + 1 = 1110

A
0
 B

0

S
0

A
1
 B

1

S
1

A
2
 B

2

S
2

A
3
 B

3

S
3

C
out

C
in

0 0 1 10 0 1 0

0

4-bit Adder to 4-bit Subtractor

28

• What if we want to subtract instead?

• How do we calculate 3 - 2 = 1?

• We know how to calculate 3 + (-2) = 1

• How do we negate a two’s complement number?

• -2: !(0010) + 1 = 1101 + 1 = 1110

A
0
 B

0

S
0

A
1
 B

1

S
1

A
2
 B

2

S
2

A
3
 B

3

S
3

C
out

C
in

0 0 1 10 0 1 0

0

1 1 0 1

4-bit Adder to 4-bit Subtractor

29

• How do we calculate 3 - 2 = 1?

• We know how to calculate 3 + (-2) = 1

• -2: !(0010) + 1 = 1101 + 1 = 1110

• 3 - 2 = 3 + (-2)

A
0
 B

0

S
0

A
1
 B

1

S
1

A
2
 B

2

S
2

A
3
 B

3

S
3

C
out

C
in

0 0 1 10 0 1 0

0

1 1 0 1

4-bit Adder to 4-bit Subtractor

30

• How do we calculate 3 - 2 = 1?

• We know how to calculate 3 + (-2) = 1

• -2: !(0010) + 1 = 1101 + 1 = 1110

• 3 - 2 = 3 + (-2) = 3 + 1101
2
 + 1

A
0
 B

0

S
0

A
1
 B

1

S
1

A
2
 B

2

S
2

A
3
 B

3

S
3

C
out

C
in

0 0 1 10 0 1 0

0

1 1 0 1

4-bit Adder to 4-bit Subtractor

31

• How do we calculate 3 - 2 = 1?

• We know how to calculate 3 + (-2) = 1

• -2: !(0010) + 1 = 1101 + 1 = 1110

• 3 - 2 = 3 + (-2) = 3 + 1101
2
 + 1

A
0
 B

0

S
0

A
1
 B

1

S
1

A
2
 B

2

S
2

A
3
 B

3

S
3

C
out

C
in

0 0 1 10 0 1 0

0

1 1 0 1

???

4-bit Adder to 4-bit Subtractor

32

• How do we calculate 3 - 2 = 1?

• We know how to calculate 3 + (-2) = 1

• -2: !(0010) + 1 = 1101 + 1 = 1110

• 3 - 2 = 3 + (-2) = 3 + 1101
2
 + 1

A
0
 B

0

S
0

A
1
 B

1

S
1

A
2
 B

2

S
2

A
3
 B

3

S
3

C
out

C
in

0 0 1 10 0 1 0

0

1 1 0 1

4-bit Adder to 4-bit Subtractor

33

• How do we calculate 3 - 2 = 1?

• We know how to calculate 3 + (-2) = 1

• -2: !(0010) + 1 = 1101 + 1 = 1110

• 3 - 2 = 3 + (-2) = 3 + 1101
2
 + 1

A
0
 B

0

S
0

A
1
 B

1

S
1

A
2
 B

2

S
2

A
3
 B

3

S
3

C
out

C
in

0 0 1 10 0 1 0

1

1 1 0 1

4-bit Adder to 4-bit Subtractor

34

• How do we calculate 3 - 2 = 1?

• We know how to calculate 3 + (-2) = 1

• -2: !(0010) + 1 = 1101 + 1 = 1110

• 3 - 2 = 3 + (-2) = 3 + 1101
2
 + 1

A
0
 B

0

S
0

A
1
 B

1

S
1

A
2
 B

2

S
2

A
3
 B

3

S
3

C
out

C
in

0 0 1 10 0 1 0

1

1 1 0 1

4-bit Adder to 4-bit Subtractor

35

• How do we calculate 3 - 2 = 1?

• We know how to calculate 3 + (-2) = 1

• -2: !(0010) + 1 = 1101 + 1 = 1110

• 3 - 2 = 3 + (-2) = 3 + 1101
2
 + 1

A
0
 B

0

S
0

A
1
 B

1

S
1

A
2
 B

2

S
2

A
3
 B

3

S
3

C
out

C
in

0 0 1 10 0 1 0

1

1 1 0 1

1

1

4-bit Adder to 4-bit Subtractor

36

• How do we calculate 3 - 2 = 1?

• We know how to calculate 3 + (-2) = 1

• -2: !(0010) + 1 = 1101 + 1 = 1110

• 3 - 2 = 3 + (-2) = 3 + 1101
2
 + 1

A
0
 B

0

S
0

A
1
 B

1

S
1

A
2
 B

2

S
2

A
3
 B

3

S
3

C
out

C
in

0 0 1 10 0 1 0

1

1 1 0 1

10

11

4-bit Adder to 4-bit Subtractor

37

• How do we calculate 3 - 2 = 1?

• We know how to calculate 3 + (-2) = 1

• -2: !(0010) + 1 = 1101 + 1 = 1110

• 3 - 2 = 3 + (-2) = 3 + 1101
2
 + 1

A
0
 B

0

S
0

A
1
 B

1

S
1

A
2
 B

2

S
2

A
3
 B

3

S
3

C
out

C
in

0 0 1 10 0 1 0

1

1 1 0 1

10

1

0

11

4-bit Adder to 4-bit Subtractor

38

• How do we calculate 3 - 2 = 1?

• We know how to calculate 3 + (-2) = 1

• -2: !(0010) + 1 = 1101 + 1 = 1110

• 3 - 2 = 3 + (-2) = 3 + 1101
2
 + 1

A
0
 B

0

S
0

A
1
 B

1

S
1

A
2
 B

2

S
2

A
3
 B

3

S
3

C
out

C
in

0 0 1 10 0 1 0

1

1 1 0 1

10

1

0

1

0

11

Overflow?

4-bit Adder to 4-bit Subtractor

39

• How do we calculate 3 - 2 = 1?

• We know how to calculate 3 + (-2) = 1

• -2: !(0010) + 1 = 1101 + 1 = 1110

• 3 - 2 = 3 + (-2) = 3 + 1101
2
 + 1

A
0
 B

0

S
0

A
1
 B

1

S
1

A
2
 B

2

S
2

A
3
 B

3

S
3

C
out

C
in

0 0 1 10 0 1 0

1

1 1 0 1

10

1

0

1

0

11

Overflow?

No. Cin = Cout

4-bit Adder to 4-bit Subtractor

40

• Can we add and subtract with the same circuit?

A
0
 B

0

S
0

A
1
 B

1

S
1

A
2
 B

2

S
2

A
3
 B

3

S
3

C
out

0 0 1 10 0 1 0

1

1 1 0 1

10

1

0

1

0

11

4-bit Adder to 4-bit Subtractor

41

• Can we add and subtract with the same circuit?

A
0
 B

0

S
0

A
1
 B

1

S
1

A
2
 B

2

S
2

A
3
 B

3

S
3

C
out

0 0 1 10 0 1 0

1

1 1 0 1

10

1

0

1

0

11 1 = subtract

0 = add

4-bit Adder to 4-bit Subtractor

42

• Can we add and subtract with the same circuit?

• How can we disable the inverter?

A
0
 B

0

S
0

A
1
 B

1

S
1

A
2
 B

2

S
2

A
3
 B

3

S
3

C
out

0 0 1 10 0 1 0

1

1 1 0 1

10

1

0

1

0

11 1 = subtract

0 = add

4-bit Adder to 4-bit Subtractor

43

• Can we add and subtract with the same circuit?

• How can we disable the inverter?

A
0
 B

0

S
0

A
1
 B

1

S
1

A
2
 B

2

S
2

A
3
 B

3

S
3

C
out

0 0 1 10 0 1 0

1

1 1 0 1

10

1

0

1

0

11 1 = subtract

0 = add

sub? in out

0 0

0 1

1 0

1 1

4-bit Adder to 4-bit Subtractor

44

• Can we add and subtract with the same circuit?

• How can we disable the inverter?

A
0
 B

0

S
0

A
1
 B

1

S
1

A
2
 B

2

S
2

A
3
 B

3

S
3

C
out

0 0 1 10 0 1 0

1

1 1 0 1

10

1

0

1

0

11 1 = subtract

0 = add

sub? in out

0 0 0

0 1 1

1 0

1 1

4-bit Adder to 4-bit Subtractor

45

• Can we add and subtract with the same circuit?

• How can we disable the inverter?

A
0
 B

0

S
0

A
1
 B

1

S
1

A
2
 B

2

S
2

A
3
 B

3

S
3

C
out

0 0 1 10 0 1 0

1

1 1 0 1

10

1

0

1

0

11 1 = subtract

0 = add

sub? in out

0 0 0

0 1 1

1 0 1

1 1 0

1 1 0 1

4-bit Adder to 4-bit Subtractor

46

• Can we add and subtract with the same circuit?

• How can we disable the inverter?

A
0
 B

0

S
0

A
1
 B

1

S
1

A
2
 B

2

S
2

A
3
 B

3

S
3

C
out

0 0 1 10 0 1 0

1

10

1

0

1

0

11 1 = subtract

0 = add

sub? in out

0 0 0

0 1 1

1 0 1

1 1 0

State
CS 3410: Computer System Organization and Programming

47[K. Bala, A. Bracy, G. Guidi, A. Sampson, E. Sirer, Z. Susag, H. Weatherspoon, and K. Laeufer]

4-bit Adder: Delay Model

48

• So far, gates compute instantaneous

A
0
 B

0

S
0

A
1
 B

1

S
1

A
2
 B

2

S
2

A
3
 B

3

S
3

C
out

C
in

4-bit Adder: Delay Model

49

• So far, gates compute instantaneous

• In reality, there is a delay, because it takes time to compute.

A
0
 B

0

S
0

A
1
 B

1

S
1

A
2
 B

2

S
2

A
3
 B

3

S
3

C
out

C
in

4-bit Adder: Delay Model

50

• So far, gates compute instantaneous

• In reality, there is a delay, because it takes time to compute.

• Simple model: it takes 1 unit of time to propagate results
through a 1-bit adder

A
0
 B

0

S
0

A
1
 B

1

S
1

A
2
 B

2

S
2

A
3
 B

3

S
3

C
out

C
in

4-bit Adder: Delay Model

51

• So far, gates compute instantaneous

• In reality, there is a delay, because it takes time to compute.

• Simple model: it takes 1 unit of time to propagate results
through a 1-bit adder

A
0
 B

0

S
0

A
1
 B

1

S
1

A
2
 B

2

S
2

A
3
 B

3

S
3

C
out

C
in

0000

4-bit Adder: Delay Model

52

• So far, gates compute instantaneous

• In reality, there is a delay, because it takes time to compute.

• Simple model: it takes 1 unit of time to propagate results
through a 1-bit adder

A
0
 B

0

S
0

A
1
 B

1

S
1

A
2
 B

2

S
2

A
3
 B

3

S
3

C
out

C
in

0000

t = 0
0 0 1 11 1 0 1

1

4-bit Adder: Delay Model

53

• So far, gates compute instantaneous

• In reality, there is a delay, because it takes time to compute.

• Simple model: it takes 1 unit of time to propagate results
through a 1-bit adder

A
0
 B

0

S
0

A
1
 B

1

S
1

A
2
 B

2

S
2

A
3
 B

3

S
3

C
out

C
in

0000

t = 0 → t = 1
0 0 1 11 1 0 1

1

4-bit Adder: Delay Model

54

• So far, gates compute instantaneous

• In reality, there is a delay, because it takes time to compute.

• Simple model: it takes 1 unit of time to propagate results
through a 1-bit adder

A
0
 B

0

S
0

A
1
 B

1

S
1

A
2
 B

2

S
2

A
3
 B

3

S
3

C
out

C
in

0000

t = 0 → t = 1
0 0 1 11 1 0 1

1

1

1

4-bit Adder: Delay Model

55

• So far, gates compute instantaneous

• In reality, there is a delay, because it takes time to compute.

• Simple model: it takes 1 unit of time to propagate results
through a 1-bit adder

A
0
 B

0

S
0

A
1
 B

1

S
1

A
2
 B

2

S
2

A
3
 B

3

S
3

C
out

C
in

0000

t = 0 → t = 1
0 0 1 11 1 0 1

1

11

10

4-bit Adder: Delay Model

56

• So far, gates compute instantaneous

• In reality, there is a delay, because it takes time to compute.

• Simple model: it takes 1 unit of time to propagate results
through a 1-bit adder

A
0
 B

0

S
0

A
1
 B

1

S
1

A
2
 B

2

S
2

A
3
 B

3

S
3

C
out

C
in

0000

t = 0 → t = 1
0 0 1 11 1 0 1

1

111

100

4-bit Adder: Delay Model

57

• So far, gates compute instantaneous

• In reality, there is a delay, because it takes time to compute.

• Simple model: it takes 1 unit of time to propagate results
through a 1-bit adder

A
0
 B

0

S
0

A
1
 B

1

S
1

A
2
 B

2

S
2

A
3
 B

3

S
3

C
out

C
in

0000

t = 0 → t = 1
0 0 1 11 1 0 1

1

1111

100

4-bit Adder: Delay Model

58

• So far, gates compute instantaneous

• In reality, there is a delay, because it takes time to compute.

• Simple model: it takes 1 unit of time to propagate results
through a 1-bit adder

A
0
 B

0

S
0

A
1
 B

1

S
1

A
2
 B

2

S
2

A
3
 B

3

S
3

C
out

C
in

0000

t = 0 → t = 1
0 0 1 11 1 0 1

1

1111

100

4-bit Adder: Delay Model

59

• So far, gates compute instantaneous

• In reality, there is a delay, because it takes time to compute.

• Simple model: it takes 1 unit of time to propagate results
through a 1-bit adder

A
0
 B

0

S
0

A
1
 B

1

S
1

A
2
 B

2

S
2

A
3
 B

3

S
3

C
out

C
in

1000

t = 1
0 0 1 11 1 0 1

1

1111

4-bit Adder: Delay Model

60

• So far, gates compute instantaneous

• In reality, there is a delay, because it takes time to compute.

• Simple model: it takes 1 unit of time to propagate results
through a 1-bit adder

A
0
 B

0

S
0

A
1
 B

1

S
1

A
2
 B

2

S
2

A
3
 B

3

S
3

C
out

C
in

1000

t = 1 → t=2
0 0 1 11 1 0 1

1

1111

stays the same!

4-bit Adder: Delay Model

61

• So far, gates compute instantaneous

• In reality, there is a delay, because it takes time to compute.

• Simple model: it takes 1 unit of time to propagate results
through a 1-bit adder

A
0
 B

0

S
0

A
1
 B

1

S
1

A
2
 B

2

S
2

A
3
 B

3

S
3

C
out

C
in

1000

t = 1 → t=2
0 0 1 11 1 0 1

1

1111

needs to be recomputed

4-bit Adder: Delay Model

62

• So far, gates compute instantaneous

• In reality, there is a delay, because it takes time to compute.

• Simple model: it takes 1 unit of time to propagate results
through a 1-bit adder

A
0
 B

0

S
0

A
1
 B

1

S
1

A
2
 B

2

S
2

A
3
 B

3

S
3

C
out

C
in

1000

t = 1 → t=2
0 0 1 11 1 0 1

1

1011

needs to be recomputed

1

4-bit Adder: Delay Model

63

• So far, gates compute instantaneous

• In reality, there is a delay, because it takes time to compute.

• Simple model: it takes 1 unit of time to propagate results
through a 1-bit adder

A
0
 B

0

S
0

A
1
 B

1

S
1

A
2
 B

2

S
2

A
3
 B

3

S
3

C
out

C
in

1000

t = 1 → t=2
0 0 1 11 1 0 1

1

1011

stays the same!

1

4-bit Adder: Delay Model

64

• So far, gates compute instantaneous

• In reality, there is a delay, because it takes time to compute.

• Simple model: it takes 1 unit of time to propagate results
through a 1-bit adder

A
0
 B

0

S
0

A
1
 B

1

S
1

A
2
 B

2

S
2

A
3
 B

3

S
3

C
out

C
in

1000

t = 1 → t=2
0 0 1 11 1 0 1

1

1011

1

4-bit Adder: Delay Model

65

• So far, gates compute instantaneous

• In reality, there is a delay, because it takes time to compute.

• Simple model: it takes 1 unit of time to propagate results
through a 1-bit adder

A
0
 B

0

S
0

A
1
 B

1

S
1

A
2
 B

2

S
2

A
3
 B

3

S
3

C
out

C
in

1100

t=2
0 0 1 11 1 0 1

1

1011

4-bit Adder: Delay Model

66

• So far, gates compute instantaneous

• In reality, there is a delay, because it takes time to compute.

• Simple model: it takes 1 unit of time to propagate results
through a 1-bit adder

A
0
 B

0

S
0

A
1
 B

1

S
1

A
2
 B

2

S
2

A
3
 B

3

S
3

C
out

C
in

1100

t=2 → t=3
0 0 1 11 1 0 1

1

1011

4-bit Adder: Delay Model

67

• So far, gates compute instantaneous

• In reality, there is a delay, because it takes time to compute.

• Simple model: it takes 1 unit of time to propagate results
through a 1-bit adder

A
0
 B

0

S
0

A
1
 B

1

S
1

A
2
 B

2

S
2

A
3
 B

3

S
3

C
out

C
in

1100

t=2 → t=3
0 0 1 11 1 0 1

1

1011

needs to be recomputed

4-bit Adder: Delay Model

68

• So far, gates compute instantaneous

• In reality, there is a delay, because it takes time to compute.

• Simple model: it takes 1 unit of time to propagate results
through a 1-bit adder

A
0
 B

0

S
0

A
1
 B

1

S
1

A
2
 B

2

S
2

A
3
 B

3

S
3

C
out

C
in

1100

t=2 → t=3
0 0 1 11 1 0 1

1

1001

needs to be recomputed

1

4-bit Adder: Delay Model

69

• So far, gates compute instantaneous

• In reality, there is a delay, because it takes time to compute.

• Simple model: it takes 1 unit of time to propagate results
through a 1-bit adder

A
0
 B

0

S
0

A
1
 B

1

S
1

A
2
 B

2

S
2

A
3
 B

3

S
3

C
out

C
in

1100

t=2 → t=3
0 0 1 11 1 0 1

1

1001

1

4-bit Adder: Delay Model

70

• So far, gates compute instantaneous

• In reality, there is a delay, because it takes time to compute.

• Simple model: it takes 1 unit of time to propagate results
through a 1-bit adder

A
0
 B

0

S
0

A
1
 B

1

S
1

A
2
 B

2

S
2

A
3
 B

3

S
3

C
out

C
in

1110

t=3
0 0 1 11 1 0 1

1

1001

4-bit Adder: Delay Model

71

• So far, gates compute instantaneous

• In reality, there is a delay, because it takes time to compute.

• Simple model: it takes 1 unit of time to propagate results
through a 1-bit adder

A
0
 B

0

S
0

A
1
 B

1

S
1

A
2
 B

2

S
2

A
3
 B

3

S
3

C
out

C
in

1110

t=3 → t= 4
0 0 1 11 1 0 1

1

1001

4-bit Adder: Delay Model

72

• So far, gates compute instantaneous

• In reality, there is a delay, because it takes time to compute.

• Simple model: it takes 1 unit of time to propagate results
through a 1-bit adder

A
0
 B

0

S
0

A
1
 B

1

S
1

A
2
 B

2

S
2

A
3
 B

3

S
3

C
out

C
in

1110

t=3 → t= 4
0 0 1 11 1 0 1

1

1001

needs to be recomputed

4-bit Adder: Delay Model

73

• So far, gates compute instantaneous

• In reality, there is a delay, because it takes time to compute.

• Simple model: it takes 1 unit of time to propagate results
through a 1-bit adder

A
0
 B

0

S
0

A
1
 B

1

S
1

A
2
 B

2

S
2

A
3
 B

3

S
3

C
out

C
in

1111

t=3 → t= 4
0 0 1 11 1 0 1

1

1000

needs to be recomputed

4-bit Adder: Delay Model

74

• No more changes to the adder inputs → we reached a fixed point.

A
0
 B

0

S
0

A
1
 B

1

S
1

A
2
 B

2

S
2

A
3
 B

3

S
3

C
out

C
in

1111

t= 4
0 0 1 11 1 0 1

1

1000

4-bit Adder: Outputs over time

75

Cout S

t = 0 ? ?

t = 1 0 11112

t = 2 0 11012

t = 3 0 10012

t = 4 1 00012

t = 5 1 00012

4-bit Adder: Outputs over time

76

Cout S

t = 0 ? ?

t = 1 0 11112

t = 2 0 11012

t = 3 0 10012

t = 4 1 00012

t = 5 1 00012

● Lower bits are ready first.
● The correct value is only available

after 4 time units.

4-bit Adder: Outputs over time

77

Cout S

t = 0 ? ?

t = 1 0 11112

t = 2 0 11012

t = 3 0 10012

t = 4 1 00012

t = 5 1 00012

● Lower bits are ready first.
● The correct value is only available

after 4 time units.
● In reality, the delays are more

complicated than our model.

4-bit Adder: Outputs over time

78

Cout S

t = 0 ? ?

t = 1 0 11112

t = 2 0 11012

t = 3 0 10012

t = 4 1 00012

t = 5 1 00012

● Lower bits are ready first.
● The correct value is only available

after 4 time units.
● In reality, the delays are more

complicated than our model.
● We assumed that all inputs to the

4-bit adder arrive at t = 0.

4-bit Adder: Outputs over time

79

Cout S

t = 0 ? ?

t = 1 0 11112

t = 2 0 11012

t = 3 0 10012

t = 4 1 00012

t = 5 1 00012

● Lower bits are ready first.
● The correct value is only available

after 4 time units.
● In reality, the delays are more

complicated than our model.
● We assumed that all inputs to the

4-bit adder arrive at t = 0.
● Need state to synchronize.

How can we store information in a
binary circuit?

80

Idea: use feedback

81

Idea: use feedback

82

1

Idea: use feedback

83

0

Idea: use feedback

84

0

We are storing a charge. This is how your DRAM main memory works.

Idea: use feedback

85

0

We are storing a charge. This is how your DRAM main memory works.
Problem: Charge disappears over time.

Use Active Element to Maintain Charge?

86

0

Use Active Element to Maintain Charge?

87

0
1

Use Active Element to Maintain Charge?

88

1
1

Use Active Element to Maintain Charge?

89

1
0

Use Active Element to Maintain Charge?

90

1
0

We just built an
oscillator!

Bi-Stable Device

91

1
0

Now there is an
equilibrium.

Bi-Stable Device

92

0
0

Now there is an
equilibrium.

Bi-Stable Device

93

0
1

Now there is an
equilibrium.

Bi-Stable Device

94

0
1

How do we
actually change

the value?

Set-Reset Latch

95

B

Q

AS

R

Add two OR gates.

Set-Reset Latch

96

B

Q

AS

R

Add two OR gates.

S R Q ¬Q
0 0
0 1
1 0
1 1

S=0

Set-Reset Latch

97

B

Q R=1

S R Q ¬Q
0 0
0 1
1 0
1 1

S=0

Set-Reset Latch

98

B

Q R=1

S R Q ¬Q
0 0
0 1
1 0
1 1

Where do we start our
analysis?

S=0

Set-Reset Latch

99

B

Q R=1

S R Q ¬Q
0 0
0 1
1 0
1 1

Where do we start our
analysis?
Remember: 1 ∨ a = 1

S=0

Set-Reset Latch

100

B

Q R=1

S R Q ¬Q
0 0
0 1
1 0
1 1

Where do we start our
analysis?
Remember: 1 ∨ a = 1

S=0

Set-Reset Latch

101

B

Q = 0 R=1

S R Q ¬Q
0 0
0 1 0
1 0
1 1

Where do we start our
analysis?
Remember: 1 ∨ a = 1

S=0

Set-Reset Latch

102

B

Q = 0 R=1

S R Q ¬Q
0 0
0 1 0
1 0
1 1

Where do we start our
analysis?
Remember: 1 ∨ a = 1

0

S=0

Set-Reset Latch

103

B

Q = 0 R=1

S R Q ¬Q
0 0
0 1 0 1
1 0
1 1

Where do we start our
analysis?
Remember: 1 ∨ a = 1

0
= 1

S=0

Set-Reset Latch

104

B

Q R=1

S R Q ¬Q
0 0
0 1
1 0
1 1

Alternative: Just guess!

S=0

Set-Reset Latch

105

B

Q = 1?
R=1

S R Q ¬Q
0 0
0 1
1 0
1 1

Alternative: Just guess!

S=0

Set-Reset Latch

106

B

Q = 1?
R=1

S R Q ¬Q
0 0
0 1
1 0
1 1

Alternative: Just guess!

1

S=0

Set-Reset Latch

107

B

Q = 1?
R=1

S R Q ¬Q
0 0
0 1
1 0
1 1

Alternative: Just guess!

1
= 0

S=0

Set-Reset Latch

108

B

Q = 1?
R=1

S R Q ¬Q
0 0
0 1
1 0
1 1

Alternative: Just guess!

1
= 0

1

S=0

Set-Reset Latch

109

B

Q = 0
R=1

S R Q ¬Q
0 0
0 1
1 0
1 1

Alternative: Just guess!

1
= 0

1

S=0

Set-Reset Latch

110

B

Q = 0
R=1

S R Q ¬Q
0 0
0 1
1 0
1 1

Alternative: Just guess!

0
= 0

1

S=0

Set-Reset Latch

111

B

Q = 0
R=1

S R Q ¬Q
0 0
0 1
1 0
1 1

Alternative: Just guess!

0
= 1

1

S=0

Set-Reset Latch

112

B

Q = 0
R=1

S R Q ¬Q
0 0
0 1 0 1
1 0
1 1

Alternative: Just guess!
S = 0, R = 1 is a stable state.
We always converge to the same state.

0
= 1

1

S=1

Set-Reset Latch

113

B

Q R=0

S R Q ¬Q
0 0
0 1 0 1
1 0
1 1

0
=

PollEv.com/cs3410

https://pollev.com/cs3410

S=1

Set-Reset Latch

114

B

Q R=0

S R Q ¬Q
0 0
0 1 0 1
1 0
1 1

1
=

Where do we start our
analysis?
Remember: 1 ∨ a = 1

S=1

Set-Reset Latch

115

B

Q R=0

S R Q ¬Q
0 0
0 1 0 1
1 0
1 1

1
= 0

S=1

Set-Reset Latch

116

B

Q R=0

S R Q ¬Q
0 0
0 1 0 1
1 0
1 1

1
= 0

0

S=1

Set-Reset Latch

117

B

Q=1 R=0

S R Q ¬Q
0 0
0 1 0 1
1 0
1 1

1
= 0

0

S=1

Set-Reset Latch

118

B

Q=1 R=0

S R Q ¬Q
0 0
0 1 0 1
1 0 1 0
1 1

1
= 0

0

S=0

Set-Reset Latch

119

B

Q R=0

S R Q ¬Q
0 0
0 1 0 1
1 0 1 0
1 1

S=0

Set-Reset Latch

120

B

Q R=0

S R Q ¬Q
0 0
0 1 0 1
1 0 1 0
1 1

Our “OR trick” no longer works.

S=0

Set-Reset Latch

121

B

Q R=0

S R Q ¬Q
0 0
0 1 0 1
1 0 1 0
1 1

Our “OR trick” no longer works.
Remember: 0 ∨ a = a

S=0

Set-Reset Latch

122

B

Q R=0

S R Q ¬Q
0 0
0 1 0 1
1 0 1 0
1 1

Our “OR trick” no longer works.
Remember: 0 ∨ a = a

S=0

Set-Reset Latch

123

B

Q R=0

S R Q ¬Q
0 0
0 1 0 1
1 0 1 0
1 1

Our “OR trick” no longer works.
Remember: 0 ∨ a = a

S=0

Set-Reset Latch

124

B

Q R=0

S R Q ¬Q
0 0
0 1 0 1
1 0 1 0
1 1

Our “OR trick” no longer works.
Remember: 0 ∨ a = a

We are
maintaining state!

S=0

Set-Reset Latch

125

B

Q R=0

S R Q ¬Q
0 0 Qt-1 ¬Qt-

1
0 1 0 1
1 0 1 0
1 1

We are
maintaining state!

S

Set-Reset Latch

126

B

Q R

S R Q ¬Q
0 0 Qt-1 ¬Qt-

1
0 1 0 1
1 0 1 0
1 1

S

Set-Reset Latch

127

B

Q R

S R Q ¬Q
0 0 Qt-1 ¬Qt-

1
0 1 0 1
1 0 1 0
1 1

Retain

Reset

Set

S

Set-Reset Latch

128

B

Q R

S R Q ¬Q
0 0 Qt-1 ¬Qt-

1
0 1 0 1
1 0 1 0
1 1

Retain

Reset

Set

What does this
row do?

S=1

Set-Reset Latch

129

B

Q R=1

S R Q ¬Q
0 0 Qt-1 ¬Qt-

1
0 1 0 1
1 0 1 0
1 1

Retain

Reset

Set

What does this
row do?

We know: 1 ∨ a = 1

1 1

S=1

Set-Reset Latch

130

B

Q=0 R=1

S R Q ¬Q
0 0 Qt-1 ¬Qt-

1
0 1 0 1
1 0 1 0
1 1

Retain

Reset

Set

What does this
row do?

We know: 1 ∨ a = 1

1 1

= 0

S=1

Set-Reset Latch

131

B

Q=0 R=1

S R Q ¬Q
0 0 Qt-1 ¬Qt-

1
0 1 0 1
1 0 1 0
1 1

Retain

Reset

Set

So now Q = ¬Q?

We know: 1 ∨ a = 1

1 1

= 0

S=1

Set-Reset Latch

132

B

Q=0 R=1

S R Q ¬Q
0 0 Qt-1 ¬Qt-

1
0 1 0 1
1 0 1 0
1 1

Retain

Reset

Set
What if we try to
go back to S = 0

and R = 0?

1 1

= 0

S=0

Set-Reset Latch

133

B

Q=0 R=0

S R Q ¬Q
0 0 Qt-1 ¬Qt-

1
0 1 0 1
1 0 1 0
1 1

Retain

Reset

Set
What if we try to
go back to S = 0

and R = 0?

1 1

= 0

S=0

Set-Reset Latch

134

B

Q=0 R=0

S R Q ¬Q
0 0 Qt-1 ¬Qt-

1
0 1 0 1
1 0 1 0
1 1

Retain

Reset

Set
What if we try to
go back to S = 0

and R = 0?

0 0

= 0

S=0

Set-Reset Latch

135

B

Q=1 R=0

S R Q ¬Q
0 0 Qt-1 ¬Qt-

1
0 1 0 1
1 0 1 0
1 1

Retain

Reset

Set
What if we try to
go back to S = 0

and R = 0?

0 0

= 1

S=0

Set-Reset Latch

136

B

Q=0 R=0

S R Q ¬Q
0 0 Qt-1 ¬Qt-

1
0 1 0 1
1 0 1 0
1 1

Retain

Reset

Set
What if we try to
go back to S = 0

and R = 0?

1 1

= 0

S=0

Set-Reset Latch

137

B

Q=1 R=0

S R Q ¬Q
0 0 Qt-1 ¬Qt-

1
0 1 0 1
1 0 1 0
1 1

Retain

Reset

Set

Did we build an
oscillator again?

0 0

= 1

S=0

Set-Reset Latch

138

B

Q=1 R=0

S R Q ¬Q
0 0 Qt-1 ¬Qt-

1
0 1 0 1
1 0 1 0
1 1

Retain

Reset

Set

Did we build an
oscillator again?

0 0

= 1

In theory: Yes.
In practice: we will end up with
stable feedback, but unpredictable if
Q = 0 or Q = 1.

S=0

Set-Reset Latch

139

B

Q=1 R=0

S R Q ¬Q
0 0 Qt-1 ¬Qt-

1
0 1 0 1
1 0 1 0
1 1

Retain

Reset

Set

Did we build an
oscillator again?

0 0

= 1

In theory: Yes.
In practice: we will end up with
stable feedback, but unpredictable if
Q = 0 or Q = 1.

Forbidden

Next Goal
How do we avoid the forbidden state of S-R Latch?

140

Fourth Attempt: (Unclocked) D Latch

141

S

R

Q

Fourth Attempt: (Unclocked) D Latch

142

D S

R

Q

Fourth Attempt: (Unclocked) D Latch

143

Fill in the truth table?

D
S

R

Q

Q

D

D Q
0
1

S

R

Q

Fourth Attempt: (Unclocked) D Latch

144

Fill in the truth table?

D
S

R

Q

Q

D

D Q ¬Q
0 0 1

1 1 0

S

R

Q

Fourth Attempt: (Unclocked) D Latch

145

D
S

R

Q

Q

D

D Q ¬Q
0 0 1

1 1 0

S

R

Q
Cannot enter an undefined state

When D changes, Q changes
– … immediately (…after a delay of 2 Ors and 2 NOTs)

We aren’t really storing anything anymore!

Takeaway
Set-Reset (SR) Latch can store one bit and we can change the value of
the stored bit. But, SR Latch has a forbidden state.

(Unclocked) D Latch can store and change a bit like an SR Latch while
avoiding the forbidden state.

146

Next Goal
How do we coordinate state changes to a D Latch?

147

Aside: Clocks
Clock helps coordinate state changes

•Usually generated by an oscillating crystal
•Fixed period
•Frequency = 1/period

148

1

0

Aside: Clocks
Clock helps coordinate state changes

•Usually generated by an oscillating crystal
•Fixed period
•Frequency = 1/period

149

1

0

clock
high

clock
low

Aside: Clocks
Clock helps coordinate state changes

•Usually generated by an oscillating crystal
•Fixed period
•Frequency = 1/period

150

1

0

clock
period

clock
high

clock
low

Aside: Clocks
Clock helps coordinate state changes

•Usually generated by an oscillating crystal
•Fixed period
•Frequency = 1/period

151

1

0

clock
period

clock
high

clock
low

rising
edgefalling

edge

Round 2: D Latch (1)

152

S

R

D Q

D Q ¬Q

0
1

D Q
 C

Set

Reset

• Inverter prevents SR
Latch from entering 1,1
state

Round 2: D Latch (1)

153

S

R

D Q

D Q ¬Q

0 0 1

1 1 0
D Q

 C

Set

Reset

• Inverter prevents SR
Latch from entering 1,1
state

Round 2: D Latch (1)

154

S

R

D Q

D Q ¬Q

0 0 1

1 1 0
D Q

 C

Set

Reset

• Inverter prevents SR
Latch from entering 1,1
state

Round 2: D Latch (1)

155

D Q ¬Q

0 0 1

1 1 0
D Q

 C

Set

Reset

• Inverter prevents SR
Latch from entering 1,1
state

S

R

D Q

 C

Round 2: D Latch (1)

156

D Q ¬Q

0 0 1

1 1 0
D Q

 C

Set

Reset

• Inverter prevents SR
Latch from entering 1,1
state

S

R

D Q

 C

AND gate forces a 0
when C = 0.

Round 2: D Latch (1)

157

D Q ¬Q

0 0 1

1 1 0
D Q

 C

Set

Reset

• Inverter prevents SR
Latch from entering 1,1
state

S

R

D Q

 C

AND gate forces a 0
when C = 0.

Remember: 0 ∧ a = 0

Round 2: D Latch (1)

158

C D Q ¬Q

0 0 Q
t-1

¬Q
t-1

0 1 Q
t-1

¬Q
t-1

D Q
 C

Set
Hold

• Inverter prevents SR
Latch from entering 1,1
state

S

R

D Q

 C

AND gate forces a 0
when C = 0.

Remember: 0 ∧ a = 0

Hold

Round 2: D Latch (1)

159

C D Q ¬Q

0 0 Q
t-1

¬Q
t-1

0 1 Q
t-1

¬Q
t-1

D Q
 C

Hold

• Inverter prevents SR
Latch from entering 1,1
state

S

R

D Q

 C

AND gate lets D pass
when C = 1.

Remember: 1 ∧ a = a

Hold

Round 2: D Latch (1)

160

C D Q ¬Q

0 0 Q
t-1

¬Q
t-1

0 1 Q
t-1

¬Q
t-1

1 0 0 1

1 1 1 0

D Q
 C

Hold

• Inverter prevents SR
Latch from entering 1,1
state

S

R

D Q

 C

AND gate lets D pass
when C = 1.

Remember: 1 ∧ a = a

Hold

Set

Reset

Round 2: D Latch (1)

161

C D Q ¬Q

0 0 Q
t-1

¬Q
t-1

0 1 Q
t-1

¬Q
t-1

1 0 0 1

1 1 1 0

D Q
 C

Hold

• Level sensitive
• Inverter prevents SR
Latch from entering 1,1
state

S

R

D Q

 C

Hold

Set

Reset

Round 2: D Latch (1)

162

C D Q ¬Q

0 0 Q
t-1

¬Q
t-1

0 1 Q
t-1

¬Q
t-1

1 0 0 1

1 1 1 0

D Q
 C

Hold

• Level sensitive
• Inverter prevents SR
Latch from entering 1,1
state

S

R

D Q

 C

Hold

Set

Reset

C = 1, D Latch transparent:
 set/reset (according to D)
C = 0, D Latch opaque:
 keep state (ignore D)

PollEV Question

163

clk

D

Q

clk D Q
0 0 Q

0 1 Q

1 0 0 1

1 1 1 0

A B

What is the value of Q at A & B?
a) A = 0, B = 0
b) A = 0, B = 1
c) A = 1, B = 0
d) A = 1, B = 1

D Q
 clk

PollEV Question

164

clk

D

Q

clk D Q
0 0 Q

0 1 Q

1 0 0 1

1 1 1 0

A B

What is the value of Q at A & B?
a) A = 0, B = 0
b) A = 0, B = 1
c) A = 1, B = 0
d) A = 1, B = 1

D Q
 clk

PollEV Question

165

clk

D

Q

clk D Q
0 0 Q

0 1 Q

1 0 0 1

1 1 1 0

A B

What is the value of Q at A & B?
a) A = 0, B = 0
b) A = 0, B = 1
c) A = 1, B = 0
d) A = 1, B = 1

D Q
 clk

PollEV Question

166

clk

D

Q

clk D Q
0 0 Q

0 1 Q

1 0 0 1

1 1 1 0

A B

What is the value of Q at A & B?
a) A = 0, B = 0
b) A = 0, B = 1
c) A = 1, B = 0
d) A = 1, B = 1

D Q
 clk

PollEV Question

167

clk

D

Q

clk D Q
0 0 Q

0 1 Q

1 0 0 1

1 1 1 0

A B

What is the value of Q at A & B?
a) A = 0, B = 0
b) A = 0, B = 1
c) A = 1, B = 0
d) A = 1, B = 1

D Q
 clk

PollEV Question

168

clk

D

Q

clk D Q
0 0 Q

0 1 Q

1 0 0 1

1 1 1 0

A B

What is the value of Q at A & B?
a) A = 0, B = 0
b) A = 0, B = 1
c) A = 1, B = 0
d) A = 1, B = 1

D Q
 clk

PollEV Question

169

clk

D

Q

clk D Q
0 0 Q

0 1 Q

1 0 0 1

1 1 1 0

A B

D Q
 clk

Level Sensitive D Latch
Clock high:
 set/reset (according to D)
Clock low:
 keep state (ignore D)

Round 3: D Flip-Flop

170

• Edge-Triggered
• Data captured when

clock high
• Output changes only

on falling edges

D Q

D Q
 C C

X Q

D

clk
L
1

L
2

Round 3: D Flip-Flop

171

Clock = 1: L1 transparent
 L2 opaque

D Q D Q
C C

X QD
clk 01

L
1

L
2

X

Round 3: D Flip-Flop

172

Clock = 1: L1 transparent
 L2 opaque

D Q D Q
C C

X QD
clk 01

L
1

L
2

XD

D passes through L1
to X

X

Round 3: D Flip-Flop

173

Clock = 1: L1 transparent
 L2 opaque

D Q D Q
C C

X QD
clk 01

L
1

L
2

XD

D passes through L1
to X

X

Round 3: D Flip-Flop

174

Clock = 1: L1 transparent
 L2 opaque

D Q D Q
C C

X QD
clk 01

L
1

L
2

XD

D passes through L1
to X

X

Clock = 0: L1 opaque
 L2 transparent D Q D Q

C C
X QD

clk 10
L
1

L
2

X

Round 3: D Flip-Flop

175

Clock = 1: L1 transparent
 L2 opaque

D Q D Q
C C

X QD
clk 01

L
1

L
2

XD

D passes through L1
to X

X

Clock = 0: L1 opaque
 L2 transparent D Q D Q

C C
X QD

clk 10
L
1

L
2

X Q

X passes through L2 to
Q

X

Round 3: D Flip-Flop

176

Clock = 1: L1 transparent
 L2 opaque

D Q D Q
C C

X QD
clk 01

L
1

L
2

XD

D passes through L1
to X

X

Clock = 0: L1 opaque
 L2 transparent D Q D Q

C C
X QD

clk 10
L
1

L
2

X Q

X passes through L2 to
Q

X

Sample data at the falling
CLK edge (1🡪0)

PollEV Question – start here

177

clk

D

X

Q

What is the value of Q
at A & B?
a) A = 0, B = 0
b) A = 0, B = 1
c) A = 1, B = 0
d) A = 1, B = 1

BA

D Q D Q

C C
X QD

clk
L
1

L
2

PollEV Question – start here

178

clk

D

X

Q

What is the value of Q
at A & B?
a) A = 0, B = 0
b) A = 0, B = 1
c) A = 1, B = 0
d) A = 1, B = 1

BA

D Q D Q

C C
X QD

clk
L
1

L
2

Edge-Triggered D Flip-Flop

179

D Flip-Flop
• Edge-Triggered
• Data captured when

clock is high
• Output changes only on

falling edges

clk

D

X

Q BA

D Q D Q

C C
X QD

clk
L
1

L
2

 0

0

1

01

Edge-Triggered D Flip-Flop

180

D Flip-Flop
• Edge-Triggered
• Data captured when

clock is high
• Output changes only on

falling edges

clk

D

X

Q BA

D Q D Q

C C
X QD

clk
L
1

L
2

 0

0

1

01

Edge-Triggered D Flip-Flop

181

D Flip-Flop
• Edge-Triggered
• Data captured when

clock is high
• Output changes only on

falling edges

clk

D

X

Q BA

D Q D Q

C C
X QD

clk
L
1

L
2

 0

0

1

01

Edge-Triggered D Flip-Flop

182

D Flip-Flop
• Edge-Triggered
• Data captured when

clock is high
• Output changes only on

falling edges

clk

D

X

Q BA

D Q D Q

C C
X QD

clk
L
1

L
2

 0

0

1

01

Edge-Triggered D Flip-Flop

183

D Flip-Flop
• Edge-Triggered
• Data captured when

clock is high
• Output changes only on

falling edges

clk

D

X

Q BA

D Q D Q

C C
X QD

clk
L
1

L
2

 0

0

1

01

Edge-Triggered D Flip-Flop

184

D Flip-Flop
• Edge-Triggered
• Data captured when

clock is high
• Output changes only on

falling edges

clk

D

X

Q BA

D Q D Q

C C
X QD

clk
L
1

L
2

 0

0

1

01

Edge-Triggered D Flip-Flop

185

D Flip-Flop
• Edge-Triggered
• Data captured when

clock is high
• Output changes only on

falling edges

clk

D

X

Q BA

D Q D Q

C C
X QD

clk
L
1

L
2

 0

0

1

01

Building a D Flip Flop (DFF)
Step 1: Create an SR Latch

186

DFF

R

S

QSet Reset Q
0 0 Q
0 1 0

1 0 1

1 1 ?

Building a D Flip Flop (DFF)
Step 1: Create an SR Latch
Step 2: Create a D Latch

187

DFF

R

S

D Q

C

QClk Data Q

0 0 Q

0 1 Q

1 0 0

1 1 1

Building a D Flip Flop (DFF)
Step 1: Create an SR Latch
Step 2: Create a D Latch
Step 3: Duplicate the D Latch, chain together

188

DFF

R

S

D Q

C

QR

S

D Q

C

QD

c

l

k

Q

Level sensitive
• State changes when clock is high (or low)

Clock Disciplines

189

Clock Disciplines
Level sensitive

• State changes when clock is high (or low)

Edge triggered
• State changes at clock edge

190

positive edge-triggered

negative edge-triggered

Clock Methodology
Clock Methodology
• Negative edge, synchronous

Edge-Triggered 🡪 signals must be stable near falling edge
“near” = before and after

 tsetup thold

191

clk

compute save

tsetup thold

compute save compute

tcombinational

Round 3: D Flip-Flop

192

Clock = 1: L1 transparent
 L2 opaque

D Q D Q
C C

X QD
clk 01

L
1

L
2

XD

D passes through L1
to X

X

Clock = 0: L1 opaque
 L2 transparent D Q D Q

C C
X QD

clk 10
L
1

L
2

X Q

X passes through L2 to
Q

X

Sample data at the falling
CLK edge (1🡪0)

Clock Methodology
Clock Methodology
• Negative edge, synchronous

Edge-Triggered 🡪 signals must be stable near falling edge
“near” = before and after

 tsetup thold

193

clk

compute save

tsetup thold

compute save compute

tcombinational

Takeaway

194

Set-Reset (SR) Latch can store one bit and we can change the value of the
stored bit. But, SR Latch has a forbidden state.

(Unclocked) D Latch can store and change a bit like an SR Latch while
avoiding a forbidden state.

An Edge-Triggered D Flip-Flip stores one bit. The bit can be changed in a
synchronized fashion on the edge of a clock signal.

Next Goal
How do we store more than one bit, N bits?

195

196

QD
clk

Register
• D flip-flops in parallel

Registers

Registers

197

Register
• D flip-flops in parallel
• shared clock
• extra clocked inputs:

write_enable, reset, …

clk

D0

D3

D1

D2

4 4

4-bit

reg

clk

Registers

198

Register
• D flip-flops in parallel
• shared clock
• extra clocked inputs:

write_enable, reset, …

clk

D0

D3

D1

D2

64 64

64-bit

reg

clk

Takeaway
Set-Reset (SR) Latch can store one bit and we can change the value of
the stored bit. But, SR Latch has a forbidden state.

(Unclocked) D Latch can store and change a bit like an SR Latch while
avoiding a forbidden state.

An Edge-Triggered D Flip-Flip stores one bit. The bit can be changed
in a synchronized fashion on the edge of a clock signal.

An N-bit register stores N-bits. It is created with N D-Flip-Flops in
parallel along with a shared clock.

199

