Review: Programming in C

CS 3410: Computer System Organization and Programming

Adding your own Types: typedef and struct

- typedef allows you to define new names for existing types:
 typedef uint8_t BYTE;
- struct allows you to define a structured group of variables

```
typedef enum cardsuit{DIAMONDS, SPADES, HEARTS, CLUBS} suit_t;
typedef struct cardstruct {
   int rank;
   suit_t suit;
} card_t;

card_t card;
card.rank = 1;
card.suit = SPADES;
```

```
#include <stdio.h>
void greet(const char* name) {
    printf("Hello, %s!\n", name);
int main() {
greet("3410");
```

```
Compile
$ rv gcc lib1.c
```

```
#include <stdio.h>
                                          Compile
                                           $ rv gcc lib1.c
void greet(const char* name) {
    printf("Hello, %s!\n", name);
                                          Execute
                                           $ rv qemu ./a.out
                                              Hello, 3410!
int main() {
greet("3410");
```

```
#include <stdio.h>
int main() {
greet("3410");
void greet(const char* name) {
    printf("Hello, %s!\n", name);
```

```
Compile
$ rv gcc lib2.c
```

```
#include <stdio.h>
                                                Compile
int main() {
                                                 $ rv gcc lib2.c
 greet("3410");
                                         lib2.c:3:2: error: implicit declaration of
                                         function 'greet'
                                          3 | greet("3410");
void greet(const char* name) {
    printf("Hello, %s!\n", name);
```

```
#include <stdio.h>
int main() {
greet("3410");
void greet(const char* name) {
    printf("Hello, %s!\n", name);
```

```
Compile
         $ rv gcc lib2.c
             I refuse to look at
lib2.c:3:
            your program more
function
                 than once!
 3 | greet("3410
            gcc
```

```
#include <stdio.h>
void greet(const char* name);
int main() {
greet("3410");
void greet(const char* name) {
    printf("Hello, %s!\n", name);
```

```
Compile
$ rv gcc lib3.c
```

```
#include <stdio.h>
void greet(const char* name);
int main() {
greet("3410");
void greet(const char* name) {
    printf("Hello, %s!\n", name);
```

```
Compile
  $ rv gcc lib3.c

Execute
  $ rv qemu ./a.out
   Hello, 3410!
```

```
#include <stdio.h>
                                          Compile
void greet(const char* name);
                                           $ rv gcc lib3.c
int main() {
greet("3410");
                                          Execute
                                           $ rv qemu ./a.out
            Exact name does not matter!
                                              Hello, 3410!
void greet(const char* name) {
    printf("Hello, %s!\n", name);
```

```
#include <stdio.h>
void greet(const char* name);
                     ✓ Function declaration.
int main() {
greet("3410");
        Exact name does not matter!
printf("Hello, %s!\n", name);
```

Header file: greet.h

```
void greet(const char* name);
```

```
#include <stdio.h>
#include "greet.h"
int main() {
 greet("3410");
void greet(const char* name) {
    printf("Hello, %s!\n", name);
```

Separating files: greet.c

```
#include <stdio.h>
#include "greet.h"
```

```
void greet(const char* name) {
    printf("Hello, %s!\n", name);
}
```

Separating files: main.c

```
#include <stdio.h>
#include "greet.h"

int main() {
  greet("3410");
}
```

Compile .c files together

Compile

\$ rv gcc main.c greet.c

Execute

\$ rv qemu ./a.out

Floating Point Numbers

CS 3410: Computer System Organization and Programming

Review: Binary numbers

- What is 24₁₀ in binary?
- What is -24₁₀ in binary?
- What is 0b100001 in decimal?
- What is 0b110010 in decimal?

PollEv.com/cs3410

Important: Correction for last lecture

$$-24_{10}$$
 $+17_{10}$
 $+17_{10}$
 $+17_{10}$
 $+17_{10}$
 $+17_{10}$
 $+17_{10}$
 $+17_{10}$

Remember elementary school!

- 7₁₀

111001,

$$\sim 111001_2 + 1 = 111_2 = 7_{10}$$

$$637_{10} = 6 \times 10^2 + 3 \times 10^1 + 7 \times 10^0$$

$$101_{2} = 1 \times 2^{2} + 0 \times 2^{1} + 1 \times 2^{0}$$

$$= 4_{10} + 0_{10} + 1_{10}$$

$$= 5_{10}$$

$$63.7_{10} = 6 \times 10^{1} + 3 \times 10^{0} + 7 \times 10^{-1}$$

$$101_{2} = 1 \times 2^{2} + 0 \times 2^{1} + 1 \times 2^{0}$$

$$= 4_{10} + 0_{10} + 1_{10}$$

$$= 5_{10}$$

$$6.37_{10} = 6 \times 10^{0} + 3 \times 10^{-1} + 7 \times 10^{-2}$$

$$101_{2} = 1 \times 2^{2} + 0 \times 2^{1} + 1 \times 2^{0}$$

$$= 4_{10} + 0_{10} + 1_{10}$$

$$= 5_{10}$$

$$6.37_{10} = 6 \times 10^{0} + 3 \times 10^{-1} + 7 \times 10^{-2}$$

$$10.1_{2} = 1 \times 2^{1} + 0 \times 2^{0} + 1 \times 2^{-1}$$

$$= 2_{10} + 0_{10} + 1/2_{10}$$

$$= 2.5_{10}$$

$$6.37_{10} = 6 \times 10^{0} + 3 \times 10^{-1} + 7 \times 10^{-2}$$

$$10.1_{2} = 1 \times 2^{1} + 0 \times 2^{0} + 1 \times 2^{-1}$$
 Fixed Point Format
$$= 2_{10} + 0_{10} + 1/2_{10}$$

$$= 2.5_{10}$$

$$6.37_{10} = 6 \times 10^{0} + 3 \times 10^{-1} + 7 \times 10^{-2}$$

$$10.1_2 = 1 \times 2^1 + 0 \times 2^0 + 1 \times 2^{-1}$$
 Fixed Point Format
= $2_{10} + 0_{10} + 1/2_{10}$ Number of bits: n = ??
= 2.5_{10}

$$6.37_{10} = 6 \times 10^{0} + 3 \times 10^{-1} + 7 \times 10^{-2}$$

$$10.1_2 = 1 \times 2^1 + 0 \times 2^0 + 1 \times 2^{-1}$$
 Fixed Point Format
= $2_{10} + 0_{10} + 1/2_{10}$ Number of bits: n = 3
= 2.5_{10}

$$6.37_{10} = 6 \times 10^{0} + 3 \times 10^{-1} + 7 \times 10^{-2}$$

$$10.1_2 = 1 \times 2^1 + 0 \times 2^0 + 1 \times 2^{-1}$$
 Fixed Point Format
= $2_{10} + 0_{10} + 1/2_{10}$ Number of bits: n = 3
= 2.5_{10} Exponent: E = ??

Fixed Point Format

Exponent: E = ??

$$6.37_{10} = 6 \times 10^{0} + 3 \times 10^{-1} + 7 \times 10^{-2}$$

$$10.1_2 = 1 \times 2^1 + 0 \times 2^0 + 1 \times 2^{-1}$$
 Fixed Point Format
= $2_{10} + 0_{10} + 1/2_{10}$ Number of bits: n = 3
= 2.5_{10} Exponent: E = -1

Fixed Point Format

Exponent: E = -1

$$6.37_{10} = 6 \times 10^{0} + 3 \times 10^{-1} + 7 \times 10^{-2}$$

$$1.01_2 = 1 \times 2^0 + 0 \times 2^{-1} + 1 \times 2^{-2}$$
 Fixed Point Format
= $1_{10} + 0_{10} + 1/4_{10}$ Number of bits: n = 3
= 1.25_{10} Exponent: E = -2

Fixed Point Format

Exponent: E = -2

$$6.37_{10} = 6 \times 10^{0} + 3 \times 10^{-1} + 7 \times 10^{-2}$$

Number of bits: n = 3

$$6.37_{10} = 6 \times 10^{0} + 3 \times 10^{-1} + 7 \times 10^{-2}$$

$$0.101_2 = 1 \times 2^{2-3} + 0 \times 2^{1-3} + 1 \times 2^{0-3}$$
 Fixed Point Format
= $1/2_{10} + 0_{10} + 1/8_{10}$ Number of bits: n = 3
= 0.625_{10} Exponent: E = -3

Exponent: E = -3

$$6.37_{10} = 6 \times 10^{0} + 3 \times 10^{-1} + 7 \times 10^{-2}$$

$$0.101_2 = 1 \times 2^{2-3} + 0 \times 2^{1-3} + 1 \times 2^{0-3}$$
 Fixed Point Format
= $1/2_{10} + 0_{10} + 1/8_{10}$ Number of bits: n = 3
= 0.625_{10} Exponent: E = -3

If i is the integer value of the bits, then the <u>represented value</u> is: i $\times 2^{E}$

$$6.37_{10} = 6 \times 10^{0} + 3 \times 10^{-1} + 7 \times 10^{-2}$$

$$0.101_2 = 1 \times 2^{2-\frac{3}{2}} + 0 \times 2^{1-\frac{3}{2}} + 1 \times 2^{0-\frac{3}{2}}$$
 Fixed Point Format
= $5_{10} \times 2^{-3}$ Number of bits: n = 3
= $5/8$ Exponent: E = -3
= 0.625

If i is the integer value of the bits, then the <u>represented value</u> is:

$$i \times 2^{E}$$

Fixed Point Poll

- What is the decimal represented by 0b1001 with n=4, e=-1?
- What is the decimal represented by 0b1001 with n=4, e=2?
- What is the decimal represented by 0b1010 with n=4, e=-3?

PollEv.com/cs3410

How do you program with fixed point numbers?

 Need to statically define fixed point format for inputs and outputs of all calculations

How do you program with fixed point numbers?

- Need to statically define fixed point format for inputs and outputs of all calculations
- **Problem #1:** input range might be unknown.

How do you program with fixed point numbers?

- Need to statically define fixed point format for inputs and outputs of all calculations
- Problem #1: input range might be unknown.
- Problem #2: need to keep track of output range.

How do you program with fixed point numbers?

- Need to statically define fixed point format for inputs and outputs of all calculations
- Problem #1: input range might be unknown.
- **Problem #2:** need to keep track of output range.

Can we determine the exponent at runtime?

$$0.101_2 = 1 \times 2^{2-3} + 0 \times 2^{1-3} + 1 \times 2^{0-3}$$
 Fixed Point Format
= $1/2_{10} + 0_{10} + 1/8_{10}$ Number of bits: n = 3
= 0.625_{10} Exponent: E = -3

$$0.101_{2} = 1 \times 2^{2-3} + 0 \times 2^{1-3} + 1 \times 2^{0-3}$$

$$= 1/2_{10} + 0_{10} + 1/8_{10}$$

$$= 0.625_{10}$$

Fixed Point Format

Number of bits: n = 3

Exponent: E = -3

$$0.101_2 = 1.01_2 \times 2^{-1}$$

Fixed Point Format

Number of bits: n = 3

Exponent: E = -1

Normalize: leading 1 in front of decimal point

$$0.101_2 = 1.01_2 \times 2^{-1}$$

101000

Significand

Normalize: leading 1 in front of decimal point

Fixed Point Format

Number of bits: n = 3

Exponent: E = -1

$$0.101_2 = 1.01_2 \times 2^{-1}$$

101000

Significand (6-bit)

Normalize: leading 1 in front of decimal point

Fixed Point Format

Number of bits: n = 3

Exponent: E = -1

$$0.101_2 = 1.01_2 \times 2^{-1}$$

101000

Significand (6-bit)

- Normalize: leading 1 in front of decimal point
- Encode exponent as biased number:

$$e - 7 = -1 => e = 6$$

Fixed Point Format

Number of bits: n = 3

Exponent: E = -1

$$0.101_2 = 1.01_2 \times 2^{-1}$$

101000

Significand (6-bit)

- Normalize: leading 1 in front of decimal point
- Encode exponent as biased number:

$$e - 7 = -1 => e = 6 = 0110_2$$

Fixed Point Format

Number of bits: n = 3

Exponent: E = -1

$$0.101_2 = 1.01_2 \times 2^{-1}$$

0110 101000

Exponent (4-bit) Significand (6-bit)

- Normalize: leading 1 in front of decimal point
- Encode exponent as biased number:

$$e - 7 = -1 => e = 6 = 0110_2$$

Fixed Point Format

Number of bits: n = 3

Exponent: E = -1

$$0.101_2 = 1.01_2 \times 2^{-1}$$

0110 101000

Exponent (4-bit) Significand (6-bit)

- Normalize: leading 1 in front of decimal point
- Encode exponent as biased number: $e - 7 = -1 => e = 6 = 0110_{2}$
- Bias is chosen based on bits for the exponent.
 Normally B = 2^{# of exponent bits 1}-1

Fixed Point Format

Number of bits: n = 3

Exponent: E = -1

$$0.101_2 = 1.01_2 \times 2^{-1}$$

0110 101000

Exponent (4-bit) Significand (6-bit)

- Normalize: leading 1 in front of decimal point
- Encode exponent as biased number: $e - 7 = -1 => e = 6 = 0110_{2}$
- Sign is encoded as a single bit.

Fixed Point Format

Number of bits: n = 3

Exponent: E = -1

$$0.101_2 = 1.01_2 \times 2^{-1}$$

Sign (1-bit)

0 0110 101000

Exponent (4-bit) Significand (6-bit)

- Normalize: leading 1 in front of decimal point
- Encode exponent as biased number: $e - 7 = -1 => e = 6 = 0110_{2}$
- Sign is encoded as a single bit.

Fixed Point Format

Number of bits: n = 3

Exponent: E = -1

$$0.101_2 = 1.01_2 \times 2^{-1}$$

Sign (1-bit)

0 0110 101000

Exponent (4-bit) Significand (6-bit)

- Normalize: leading 1 in front of decimal point
- Encode exponent as biased number:

$$e - 7 = -1 => e = 6 = 0110_2$$

Sign is encoded as a single bit.

$$0.101_2 = 1.01_2 \times 2^{-1} = (-1)^s \times g_5 \cdot g_4 g_3 g_2 g_1 g_0 \times 2^{e-7}$$

Sign s

0 0110 101000

Exponent e

Significand **g**

- Normalize: leading 1 in front of decimal point
- Encode exponent as biased number:

$$e - 7 = -1 => e = 6 = 0110_{2}$$

Sign is encoded as a single bit.

$$0.101_2 = 1.01_2 \times 2^{-1} = (-1)^s \times \mathbf{g_5 \cdot g_4 g_3 g_2 g_1 g_0} \times 2^{e-7}$$

Sign **s**

0 0110 101000

Exponent e

Significand **g**

- Normalize: leading 1 in front of decimal point
- Encode exponent as biased number:

$$e - 7 = -1 => e = 6 = 0110_2$$

Sign is encoded as a single bit.

Leading 1 can be dropped.

$$0.101_2 = 1.01_2 \times 2^{-1} = (-1)^s \times 1.g_5g_4g_3g_2g_1g_0 \times 2^{e-7}$$

Sign **s**

0 0110 010000

Exponent e

Significand **g**

- Normalize: leading 1 in front of decimal point
- Encode exponent as biased number:

$$e - 7 = -1 => e = 6 = 0110_{2}$$

• Sign is encoded as a single bit.

Leading 1 can be dropped.

$$8.25_{10} = 1000.01_{2}$$

$$= (-1)^{0} \times 1000.01_{2}$$

$$= (-1)^{0} \times 1.00001_{2} \times 2^{3}$$

$$= (-1)^{0} \times 1.00001_{2} \times 2^{10-7}$$

Sign s

5 5555555

Exponent e

$$8.25_{10} = 1000.01_{2}$$

$$= (-1)^{0} \times 1000.01_{2}$$

$$= (-1)^{0} \times 1.00001_{2} \times 2^{3}$$

$$= (-1)^{0} \times 1.00001_{2} \times 2^{10-7}$$

Sign s

0 5555 55555

Exponent e

$$8.25_{10} = 1000.01_{2}$$

$$= (-1)^{0} \times 1000.01_{2}$$

$$= (-1)^{0} \times 1.00001_{2} \times 2^{3}$$

$$= (-1)^{0} \times 1.00001_{2} \times 2^{10-7}$$

Sign s

0 1010 ??????

Exponent e

$$8.25_{10} = 1000.01_{2}$$

$$= (-1)^{0} \times 1000.01_{2}$$

$$= (-1)^{0} \times 1.00001_{2} \times 2^{3}$$

$$= (-1)^{0} \times 1.00001_{2} \times 2^{10-7}$$

exponent bias B

Sign s

0 1010 ??????

$$8.25_{10} = 1000.01_{2}$$

$$= (-1)^{0} \times 1000.01_{2}$$

$$= (-1)^{0} \times 1.00001_{2} \times 2^{3}$$

$$= (-1)^{0} \times 1.00001_{2} \times 2^{\frac{10}{2}}$$

exponent bias B

Sign s

0 1010 ??????

$$8.25_{10} = 1000.01_{2}$$

$$= (-1)^{0} \times 1000.01_{2}$$

$$= (-1)^{0} \times 1.00001_{2} \times 2^{3}$$

$$= (-1)^{0} \times 1.00001_{2} \times 2^{\frac{10}{2}}$$

exponent bias B

Sign **s**

0 1010 00001?

Exponent e

$$8.25_{10} = 1000.01_{2}$$

$$= (-1)^{0} \times 1000.01_{2}$$

$$= (-1)^{0} \times 1.00001_{2} \times 2^{3}$$

$$= (-1)^{0} \times 1.00001_{2} \times 2^{\frac{10}{2}}$$

exponent bias B

Sign s

0 1010 000010

Floating Point Poll

• Encode -5.125 in our floating point format (4-bit exponent, 6-bit significant).

PollEv.com/cs3410

Standard floating point formats

- float: 32-bit, "single precision"
 - 1-bit sign, 8-bit exponent, 23-bit significand
- double: 64-bit, "double precision"
 - 1-bit sign
 - 11-bit exponent
 - 54-bit significand
- Half-precision: 16-bit, "half precision"
 - 1-bit sign
 - 5-bit exponent
 - 10-bit significand
- bfloat, 16-bit, "brain floating point"
 - Invented for machine learning (ML): Deep learning needs more range, but less precision ok
 - 1-bit sign
 - 8-bit exponent
 - 7-bit significand

Representable numbers around 0 if we require a leading 1 in front of the decimal point. (with the 32-bit float format)

Representable numbers around 0 if we require a leading 1 in front of the decimal point. (with the 32-bit float format)

The smallest non-negative number is 2⁻¹²⁷. Cannot represent 0.

Representable numbers around 0 if we require a leading 1 in front of the decimal point. (with the 32-bit float format)

The smallest non-negative number is 2⁻¹²⁷. Cannot represent 0. **Underflow** results in a very incorrect result.

Representable numbers around 0 if we require a leading 1 in front of the decimal point. (with the 32-bit float format)

The smallest non-negative number is 2⁻¹²⁷. Cannot represent 0.

Underflow results in a very incorrect result.

Can we add more precision around zero?

Representable numbers around 0 if we require a leading 1 in front of the decimal point. (with the 32-bit float format)

When e = 0, we use a leading 0 instead of a leading 1 → loses precision more gradually.

Representable numbers around 0 if we require a leading 1 in front of the decimal point. (with the 32-bit float format)

When e = 0, we use a leading 0 instead of a leading 1 → loses precision more gradually.

- $e = 0: (-1)^s \times 0.g \times 2^{-6}$
- $e > 0: (-1)^s \times 1.g \times 2^{e-7}$
- Thus, to represent 0, we set e = 0 and g = 0

• e = all ones

- e = all ones
- for our representation with 4-bit exponent:

```
e = 0b1111
```


- e = all ones
- for our representation with 4-bit exponent:
 e = 0b1111
- +/- infinity: e = 0b1111 and g = 0

- e = all ones
- for our representation with 4-bit exponent:
 e = 0b1111
- +/- infinity: e = 0b1111 and g = 0
- Not a Number (NaN): e = 0b1111 and g = /= 0

- e = all ones
- for our representation with 4-bit exponent:
 e = 0b1111
- +/- infinity: e = 0b1111 and g = 0
- Not a Number (NaN): e = 0b1111 and g =/= 0
- Dividing zero by zero is NaN, but dividing other numbers by zero is infinity!

Guidelines

- Floating-point numbers are <u>not</u> real numbers
 - Expect to accumulate some error when using floats
- Never use floating-point numbers to represent currency
 - When people say \$123.45, they want that exact number of cents, not \$123.40000152.
 - Use an integer number of cents: i.e., a fixed-point representation with a fixed decimal point
- Be suspicious of equality, f1 == f2
 - E.g. try (0.1 + 0.2) == 0.3?
 - Consider using an "error tolerance" in comparisons, like abs(f1 f2) < epsilon.
- Floating-point arithmetic is not free
 - It is slower and more energy than integer or fixed-point arithmetic
 - The flexibility is expensive since the complexity requires more complex for the hardware
- As a result, a lot of applications such as ML convert (quantize) models to a fixed-point representation so they can run efficientl.

Floating Point Error Analysis

Take CS4210 or CS4220