
[K. Bala, A. Bracy, E. Sirer, Z. Susag, H. Weatherspoon, D. Garcia, and K. Laeufer]

Review: Programming in C
CS 3410: Computer System Organization and Programming

Adding your own Types: typedef and struct
● typedef allows you to define new names for existing types:

○ typedef uint8_t BYTE;

● struct allows you to define a structured group of variables

2

typedef enum cardsuit{DIAMONDS, SPADES, HEARTS, CLUBS} suit_t;

typedef struct cardstruct {

int rank;

suit_t suit;

} card_t;

card_t card;

card.rank = 1;

card.suit = SPADES;

Function Declarations, Headers, Libraries

3

Compile
 $ rv gcc lib1.c

#include <stdio.h>

void greet(const char* name) {

 printf("Hello, %s!\n", name);

}

int main() {

 greet("3410");

}

#include <stdio.h>

void greet(const char* name) {

 printf("Hello, %s!\n", name);

}

int main() {

 greet("3410");

}

4

Compile
 $ rv gcc lib1.c

Execute
 $ rv qemu ./a.out

 Hello, 3410!

Function Declarations, Headers, Libraries

#include <stdio.h>

int main() {

 greet("3410");

}

void greet(const char* name) {

 printf("Hello, %s!\n", name);

}

5

Compile
 $ rv gcc lib2.c

Function Declarations, Headers, Libraries

#include <stdio.h>

int main() {

 greet("3410");

}

void greet(const char* name) {

 printf("Hello, %s!\n", name);

}

6

Compile
 $ rv gcc lib2.c

lib2.c:3:2: error: implicit declaration of
function ‘greet’
 3 | greet("3410");
 | ^~~~~

Function Declarations, Headers, Libraries

#include <stdio.h>

int main() {

 greet("3410");

}

void greet(const char* name) {

 printf("Hello, %s!\n", name);

}

7

Compile
 $ rv gcc lib2.c

lib2.c:3:2: error: implicit declaration of
function ‘greet’
 3 | greet("3410");
 | ^~~~~

I refuse to look at
your program more

than once!

gcc

Function Declarations, Headers, Libraries

#include <stdio.h>

void greet(const char* name);

int main() {

 greet("3410");

}

void greet(const char* name) {

 printf("Hello, %s!\n", name);

}

8

Compile
 $ rv gcc lib3.c

Function Declarations, Headers, Libraries

#include <stdio.h>

void greet(const char* name);

int main() {

 greet("3410");

}

void greet(const char* name) {

 printf("Hello, %s!\n", name);

}

9

Compile
 $ rv gcc lib3.c

Execute
 $ rv qemu ./a.out

 Hello, 3410!

Function Declarations, Headers, Libraries

#include <stdio.h>

void greet(const char* name);

int main() {

 greet("3410");

}

void greet(const char* name) {

 printf("Hello, %s!\n", name);

}

10

Compile
 $ rv gcc lib3.c

Execute
 $ rv qemu ./a.out

 Hello, 3410!
Exact name does not matter!

Function Declarations, Headers, Libraries

#include <stdio.h>

void greet(const char* name);

int main() {

 greet("3410");

}

void greet(const char* name) {

 printf("Hello, %s!\n", name);

}

11

Exact name does not matter!

Function declaration.

Function definition.

Function Declarations, Headers, Libraries

Header file: greet.h

void greet(const char* name);

12

#include <stdio.h>
#include "greet.h"

int main() {
 greet("3410");
}

void greet(const char* name) {
 printf("Hello, %s!\n", name);
}

13

Function Declarations, Headers, Libraries

Separating files: greet.c

#include <stdio.h>
#include "greet.h"

void greet(const char* name) {
 printf("Hello, %s!\n", name);
}

14

Separating files: main.c

#include <stdio.h>
#include "greet.h"

int main() {
 greet("3410");
}

15

Compile .c files together

Compile
 $ rv gcc main.c greet.c

Execute
 $ rv qemu ./a.out

16

[K. Bala, A. Bracy, E. Sirer, Z. Susag, H. Weatherspoon, D. Garcia, and K. Laeufer]

Floating Point Numbers
CS 3410: Computer System Organization and Programming

Review: Binary numbers

18

• What is 2410 in binary?
• What is -2410 in binary?
• What is 0b100001 in decimal?
• What is 0b110010 in decimal?

PollEv.com/cs3410

https://pollev.com/cs3410

19

 1010002
+ 0100012

——————
 1110012

Important: Correction for last lecture
Remember
elementary

school!- 2410
+ 1710
———

- 710

~0110002 + 1 =

~1110012 + 1 = 1112 = 710

How to represent fractional numbers in binary?

20

63710 = 6 x 102 + 3 x 101 + 7 x 100

1012 = 1 x 22 + 0 x 21 + 1 x 20
 = 410 + 010 + 110
 = 510

How to represent fractional numbers in binary?

21

63.710 = 6 x 101 + 3 x 100 + 7 x 10-1

1012 = 1 x 22 + 0 x 21 + 1 x 20
 = 410 + 010 + 110
 = 510

How to represent fractional numbers in binary?

22

6.3710 = 6 x 100 + 3 x 10-1 + 7 x 10-2

1012 = 1 x 22 + 0 x 21 + 1 x 20
 = 410 + 010 + 110
 = 510

How to represent fractional numbers in binary?

23

6.3710 = 6 x 100 + 3 x 10-1 + 7 x 10-2

10.12 = 1 x 21 + 0 x 20 + 1 x 2-1
 = 210 + 010 + 1/210
 = 2.510

How to represent fractional numbers in binary?

24

6.3710 = 6 x 100 + 3 x 10-1 + 7 x 10-2

10.12 = 1 x 21 + 0 x 20 + 1 x 2-1
 = 210 + 010 + 1/210
 = 2.510

Fixed Point Format

How to represent fractional numbers in binary?

25

6.3710 = 6 x 100 + 3 x 10-1 + 7 x 10-2

10.12 = 1 x 21 + 0 x 20 + 1 x 2-1
 = 210 + 010 + 1/210
 = 2.510

Fixed Point Format
Number of bits: n = ??

How to represent fractional numbers in binary?

26

6.3710 = 6 x 100 + 3 x 10-1 + 7 x 10-2

10.12 = 1 x 21 + 0 x 20 + 1 x 2-1
 = 210 + 010 + 1/210
 = 2.510

Fixed Point Format
Number of bits: n = 3

How to represent fractional numbers in binary?

27

6.3710 = 6 x 100 + 3 x 10-1 + 7 x 10-2

10.12 = 1 x 21 + 0 x 20 + 1 x 2-1
 = 210 + 010 + 1/210
 = 2.510

Fixed Point Format
Number of bits: n = 3
Exponent: E = ??

How to represent fractional numbers in binary?

28

6.3710 = 6 x 100 + 3 x 10-1 + 7 x 10-2

10.12 = 1 x 21 + 0 x 20 + 1 x 2-1
 = 210 + 010 + 1/210
 = 2.510

Fixed Point Format
Number of bits: n = 3
Exponent: E = -1

How to represent fractional numbers in binary?

29

6.3710 = 6 x 100 + 3 x 10-1 + 7 x 10-2

1.012 = 1 x 20 + 0 x 2-1 + 1 x 2-2
 = 110 + 010 + 1/410
 = 1.2510

Fixed Point Format
Number of bits: n = 3
Exponent: E = -2

How to represent fractional numbers in binary?

30

6.3710 = 6 x 100 + 3 x 10-1 + 7 x 10-2

1.012 = 1 x 22-2 + 0 x 21-2 + 1 x
20-2
 = 110 + 010 + 1/410
 = 1.2510

Fixed Point Format
Number of bits: n = 3
Exponent: E = -2

How to represent fractional numbers in binary?

31

6.3710 = 6 x 100 + 3 x 10-1 + 7 x 10-2

0.1012 = 1 x 22-3 + 0 x 21-3 + 1 x 20-3
 = 1/210 + 010 + 1/810
 = 0.62510

Fixed Point Format
Number of bits: n = 3
Exponent: E = -3

How to represent fractional numbers in binary?

32

6.3710 = 6 x 100 + 3 x 10-1 + 7 x 10-2

0.1012 = 1 x 22-3 + 0 x 21-3 + 1 x 20-3
 = 1/210 + 010 + 1/810
 = 0.62510

Fixed Point Format
Number of bits: n = 3
Exponent: E = -3

If i is the integer value of the bits, then the represented value is:
i x 2E

How to represent fractional numbers in binary?

33

6.3710 = 6 x 100 + 3 x 10-1 + 7 x 10-2

0.1012 = 1 x 22-3 + 0 x 21-3 + 1 x 20-3
 = 510 x 2-3
 = 5 / 8
 = 0.625

Fixed Point Format
Number of bits: n = 3
Exponent: E = -3

If i is the integer value of the bits, then the represented value is:
i x 2E

Fixed Point Poll
• What is the decimal represented

by 0b1001 with n=4, e=-1?
• What is the decimal represented

by 0b1001 with n=4, e=2?
• What is the decimal represented

by 0b1010 with n=4, e=-3?

34

PollEv.com/cs3410

https://pollev.com/cs3410

How do you program with fixed point numbers?

35

• Need to statically define fixed point format for inputs and outputs
of all calculations

How do you program with fixed point numbers?

36

• Need to statically define fixed point format for inputs and outputs
of all calculations

• Problem #1: input range might be unknown.

How do you program with fixed point numbers?

37

• Need to statically define fixed point format for inputs and outputs
of all calculations

• Problem #1: input range might be unknown.
• Problem #2: need to keep track of output range.

How do you program with fixed point numbers?

38

• Need to statically define fixed point format for inputs and outputs
of all calculations

• Problem #1: input range might be unknown.
• Problem #2: need to keep track of output range.

Can we determine
the exponent at

runtime?

From Fixed- to Floating-Point Numbers

39

0.1012 = 1 x 22-3 + 0 x 21-3 + 1 x 20-3
 = 1/210 + 010 + 1/810
 = 0.62510

Fixed Point Format
Number of bits: n = 3
Exponent: E = -3

From Fixed- to Floating-Point Numbers

40

Let’s make e part
of our binary

representation!

0.1012 = 1 x 22-3 + 0 x 21-3 + 1 x 20-3
 = 1/210 + 010 + 1/810
 = 0.62510

Fixed Point Format
Number of bits: n = 3
Exponent: E = -3

From Fixed- to Floating-Point Numbers

41

0.1012 = 1.012 x 2-1 Fixed Point Format
Number of bits: n = 3
Exponent: E = -1

● Normalize: leading 1 in front of decimal point Let’s make e part
of our binary

representation!

From Fixed- to Floating-Point Numbers

42

0.1012 = 1.012 x 2-1 Fixed Point Format
Number of bits: n = 3
Exponent: E = -1

● Normalize: leading 1 in front of decimal point

 101000
Significand

Let’s make e part
of our binary

representation!

From Fixed- to Floating-Point Numbers

43

0.1012 = 1.012 x 2-1 Fixed Point Format
Number of bits: n = 3
Exponent: E = -1

● Normalize: leading 1 in front of decimal point

 101000
Significand (6-bit)

Let’s make e part
of our binary

representation!

Significand (6-bit)

From Fixed- to Floating-Point Numbers

44

0.1012 = 1.012 x 2-1 Fixed Point Format
Number of bits: n = 3
Exponent: E = -1

● Normalize: leading 1 in front of decimal point
● Encode exponent as biased number:

e - 7 = -1 => e = 6

 101000

Let’s make e part
of our binary

representation!

Significand (6-bit)

From Fixed- to Floating-Point Numbers

45

0.1012 = 1.012 x 2-1 Fixed Point Format
Number of bits: n = 3
Exponent: E = -1

● Normalize: leading 1 in front of decimal point
● Encode exponent as biased number:

e - 7 = -1 => e = 6 = 01102

 101000

Let’s make e part
of our binary

representation!

Significand (6-bit)

From Fixed- to Floating-Point Numbers

46

0.1012 = 1.012 x 2-1 Fixed Point Format
Number of bits: n = 3
Exponent: E = -1

● Normalize: leading 1 in front of decimal point
● Encode exponent as biased number:

e - 7 = -1 => e = 6 = 01102

 0110 101000

Let’s make e part
of our binary

representation!

Exponent (4-bit)

Significand (6-bit)

From Fixed- to Floating-Point Numbers

47

0.1012 = 1.012 x 2-1 Fixed Point Format
Number of bits: n = 3
Exponent: E = -1

● Normalize: leading 1 in front of decimal point
● Encode exponent as biased number:

e - 7 = -1 => e = 6 = 01102
● Bias is chosen based on bits for the exponent.

Normally B = 2# of exponent bits - 1-1

 0110 101000

Let’s make e part
of our binary

representation!

Exponent (4-bit)

Significand (6-bit)

From Fixed- to Floating-Point Numbers

48

0.1012 = 1.012 x 2-1 Fixed Point Format
Number of bits: n = 3
Exponent: E = -1

● Normalize: leading 1 in front of decimal point
● Encode exponent as biased number:

e - 7 = -1 => e = 6 = 01102
● Sign is encoded as a single bit.

 0110 101000

Let’s make e part
of our binary

representation!

Exponent (4-bit)

Significand (6-bit)

From Fixed- to Floating-Point Numbers

49

0.1012 = 1.012 x 2-1 Fixed Point Format
Number of bits: n = 3
Exponent: E = -1

● Normalize: leading 1 in front of decimal point
● Encode exponent as biased number:

e - 7 = -1 => e = 6 = 01102
● Sign is encoded as a single bit.

0 0110 101000

Let’s make e part
of our binary

representation!

Exponent (4-bit)

Sign (1-bit)

Significand (6-bit)

Floating-Point Numbers

50

0.1012 = 1.012 x 2-1

● Normalize: leading 1 in front of decimal point
● Encode exponent as biased number:

e - 7 = -1 => e = 6 = 01102
● Sign is encoded as a single bit.

0 0110 101000
Exponent (4-bit)

Sign (1-bit)

Significand g

Floating-Point Numbers

51

0.1012 = 1.012 x 2-1 = (-1)s x g5.g4g3g2g1g0 x 2e - 7

● Normalize: leading 1 in front of decimal point
● Encode exponent as biased number:

e - 7 = -1 => e = 6 = 01102
● Sign is encoded as a single bit.

0 0110 101000
Exponent e

Sign s

Significand g

Floating-Point Numbers

52

● Normalize: leading 1 in front of decimal point
● Encode exponent as biased number:

e - 7 = -1 => e = 6 = 01102
● Sign is encoded as a single bit.

0 0110 101000
Exponent e

Sign s

Leading 1 can
be dropped.

0.1012 = 1.012 x 2-1 = (-1)s x g5.g4g3g2g1g0 x 2e - 7

Significand g

Floating-Point Numbers

53

● Normalize: leading 1 in front of decimal point
● Encode exponent as biased number:

e - 7 = -1 => e = 6 = 01102
● Sign is encoded as a single bit.

0 0110 010000
Exponent e

Sign s

Leading 1 can
be dropped.

0.1012 = 1.012 x 2-1 = (-1)s x 1.g5g4g3g2g1g0 x 2e - 7

Converting to Floating Point

54

8.2510 = 1000.012
 = (-1)0 x 1000.012
 = (-1)0 x 1.000012 x 23

 = (-1)0 x 1.000012 x 210-7

Significand g

? ???? ??????
Exponent e

Sign s

Converting to Floating Point

55

8.2510 = 1000.012
 = (-1)0 x 1000.012
 = (-1)0 x 1.000012 x 23

 = (-1)0 x 1.000012 x 210-7

Significand g

0 ???? ??????
Exponent e

Sign s

Converting to Floating Point

56

8.2510 = 1000.012
 = (-1)0 x 1000.012
 = (-1)0 x 1.000012 x 23

 = (-1)0 x 1.000012 x 210-7

Significand g

0 1010 ??????
Exponent e

Sign s

Converting to Floating Point

57

8.2510 = 1000.012
 = (-1)0 x 1000.012
 = (-1)0 x 1.000012 x 23

 = (-1)0 x 1.000012 x 210-7

Significand g

0 1010 ??????
Exponent e

Sign s
exponent bias B

Converting to Floating Point

58

8.2510 = 1000.012
 = (-1)0 x 1000.012
 = (-1)0 x 1.000012 x 23

 = (-1)0 x 1.000012 x 210-7

Significand g

0 1010 ??????
Exponent e

Sign s
exponent bias B

Converting to Floating Point

59

8.2510 = 1000.012
 = (-1)0 x 1000.012
 = (-1)0 x 1.000012 x 23

 = (-1)0 x 1.000012 x 210-7

Significand g

0 1010 00001?
Exponent e

Sign s
exponent bias B

Converting to Floating Point

60

8.2510 = 1000.012
 = (-1)0 x 1000.012
 = (-1)0 x 1.000012 x 23

 = (-1)0 x 1.000012 x 210-7

Significand g

0 1010 000010
Exponent e

Sign s
exponent bias B

Floating Point Poll
• Encode -5.125 in our floating point

format (4-bit exponent, 6-bit
significant).

61

PollEv.com/cs3410

https://pollev.com/cs3410

Standard floating point formats
• float: 32-bit, “single precision”

• 1-bit sign, 8-bit exponent, 23-bit significand
• double: 64-bit, “double precision”

• 1-bit sign
• 11-bit exponent
• 54-bit significand

•Half-precision: 16-bit, “half precision"
• 1-bit sign
• 5-bit exponent
• 10-bit significand

• bfloat, 16-bit, “brain floating point”
• Invented for machine learning (ML): Deep learning needs more range, but less precision ok
• 1-bit sign
• 8-bit exponent
• 7-bit significand

62

Subnormals

63

Representable numbers around 0 if we require a leading 1 in front of
the decimal point. (with the 32-bit float format)

Subnormals

64

Representable numbers around 0 if we require a leading 1 in front of
the decimal point. (with the 32-bit float format)

The smallest non-negative number is 2-127. Cannot represent 0.

Subnormals

65

Representable numbers around 0 if we require a leading 1 in front of
the decimal point. (with the 32-bit float format)

The smallest non-negative number is 2-127. Cannot represent 0.
Underflow results in a very incorrect result.

Subnormals

66

Representable numbers around 0 if we require a leading 1 in front of
the decimal point. (with the 32-bit float format)

The smallest non-negative number is 2-127.
Cannot represent 0.
Underflow results in a very incorrect result.

Can we add
more precision
around zero?

Subnormals

67

Representable numbers around 0 if we require a leading 1 in front of
the decimal point. (with the 32-bit float format)

When e = 0, we use a leading 0 instead of a leading 1 → loses precision
more gradually.

Subnormals

68

Representable numbers around 0 if we require a leading 1 in front of
the decimal point. (with the 32-bit float format)

When e = 0, we use a leading 0 instead of a leading 1 → loses precision
more gradually.

Subnormals

69

• e = 0: (-1)s x 0.g x 2- 6

• e > 0: (-1)s x 1.g x 2e - 7
• Thus, to represent 0, we set e = 0 and g = 0

Infinity and NaN

70

• e = all ones

Infinity and NaN

71

• e = all ones
• for our representation with 4-bit exponent:

e = 0b1111

Infinity and NaN

72

• e = all ones
• for our representation with 4-bit exponent:

e = 0b1111
• +/- infinity: e = 0b1111 and g = 0

Infinity and NaN

73

• e = all ones
• for our representation with 4-bit exponent:

e = 0b1111
• +/- infinity: e = 0b1111 and g = 0
• Not a Number (NaN): e = 0b1111 and g =/= 0

Infinity and NaN

74

• e = all ones
• for our representation with 4-bit exponent:

e = 0b1111
• +/- infinity: e = 0b1111 and g = 0
• Not a Number (NaN): e = 0b1111 and g =/= 0
• Dividing zero by zero is NaN, but dividing other

numbers by zero is infinity!

Guidelines
• Floating-point numbers are not real numbers

• Expect to accumulate some error when using floats

• Never use floating-point numbers to represent currency
• When people say $123.45, they want that exact number of cents, not $123.40000152.
• Use an integer number of cents: i.e., a fixed-point representation with a fixed decimal point

• Be suspicious of equality, f1 == f2
• E.g. try (0.1 + 0.2) == 0.3 ?
• Consider using an “error tolerance” in comparisons, like abs(f1 - f2) < epsilon.

• Floating-point arithmetic is not free
• It is slower and more energy than integer or fixed-point arithmetic
• The flexibility is expensive since the complexity requires more complex for the hardware
• As a result, a lot of applications such as ML convert (quantize) models to a fixed-point

representation so they can run efficientl.
75

Floating Point Error Analysis
Take CS4210 or CS4220

76

