
CS 3410 Lab 9
Fall 2025

1



CS 3410 Fall 2025

Agenda

1 Intro to Caches

2 Worksheet

2

3 Assignment Tips



Intro to Caches

3



CS 3410 Fall 2025

Cache Parameters

● Tag: High-order bits used to compare addresses of the same cache mapping
● Index: Bits that determine where in the cache an address can go
● Offset: Low-order bits to select a byte within a cache block

4

Tag Index Offset

Address breakdown:



CS 3410 Fall 2025

Direct Mapped Cache

Each address maps to exactly 1 cache block

ex) 4 byte direct mapped cache

● 4 blocks, 1 byte each
● Need 4 = 22 indices, so 2 index bits

5



CS 3410 Fall 2025

Set Associative Cache

● Divide cache into sets; can store data in any way within a set
● Index is used to map addresses to a specific set, so not fully associative

6

Can go in either way, so long as index matches!



CS 3410 Fall 2025

Fully Associative Cache

Each address can map to any cache block

ex) 8 byte fully associative cache

● 4 blocks, 2-bytes each (use offset to access each byte)
● 4-bit addresses, no need for index bit

7



CS 3410 Fall 2025

Replacement Policies

● LRU (Least Recently Used): evict block used longest ago

○ Requires extensive bookkeeping

● NMRU (Not Most Recently Used): evict any block that was not the most recently accessed

○ Less bookkeeping

● … and more

● Replacement policies are only required for associative caches

8



CS 3410 Fall 2025

Cache Hits/Misses

● Cache Hit: data is in cache

● Cache Miss: data is not in cache
○ Have to retrieve data from memory -> extra time!

● For the 4 byte direct mapped cache on the 
right, would the following loads be a hit or a 
miss? 
○ Load 1100
○ Load 1101?

9



Worksheet

10



CS 3410 Fall 2025

Worksheet

● address = tag + index + offset 

● AMAT = access time + miss rate x miss penalty

○ miss rate = # cache misses / # cache accesses

○ miss penalty = extra time it takes to retrieve data from lower memory

11



Assignment Tips

12



CS 3410 Fall 2025

Assignment Overview

● Objective: simulate a single core cache

● Task 1-2: initialize cache and implement functions to extract offset, index, and tag

● Task 3: implement a direct-mapped cache 

● Task 4: add support for set associativity

● Task 5: implement a write-back cache

● Task 6: compute write-thru statistics

13


