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Buffer Overflow

e \Well-known security vulnerability that can be used to effectively exploit unprotected
programs.

e (Occurs when some user input is written to a fixed length buffer and the size of the user input
exceeds the size of the buffer being written into.

e [f this happens, the extra input overflows into adjacent memory locations on the stack,
overwriting their data.

e (Can cause major problems if important data like the sp or ra are overwritten.

e [E.g - overwriting the ra can lead to a segfault (caused by attempting to access restricted /
nonexistent memory addresses).

e Hackers can use these vulnerabilities to force programs to do what they want (this type of
deliberate attack is called stack smashing).
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Review of memory Segments (you have learned)

e Stack- Memory segment used for function calls.
o stack frames for each function call
o frames store local variables, function args, frame
pointer, register backups, and return addresses.
e Heap - Dynamically allocated memory memory segment
o used for objects and data that persist beyond
function calls.
e Data - Stores global and static variables.
e Text/Code- Contains the compiled executable code (machine
instructions to be run) of a program.
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Stack Layout with a Buffer

blue's blue’sra
stack saved fp blUE() {
frame|l saved regs . \
pw— pink(0,1,2,3,4,5);
pink’s ra }
pink’s blue’s fp pink(int @, int b, intc, intd, inte, intf){
stack | saved regs int x;
rame X . (10,11,12,13,14);
fp-> | args for orange }
orange’sra inge(int q, int b, intc, int, d, inte) {
el pinksfp char buf[100];
frame | saved regs gets(buf);  // no bounds check!
sp> buf[100] -
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Useful GDB Commands

e info frame/if - lists information about the stack frame

e info registers - prints out the value of all RISC-V registers

e p buff - prints out the value of the variable buff

e p &buff - prints out the address where buff is located

e X/4xg buff - prints out 4 double words in hex starting at the address buff is pointing to

e p/x buff[Q] - prints the first character of buff in hex

e stepi - step one instruction

e display/i $pc - print the current instruction

e (Can also directly print out data at a particular address, whether or not that address is
associated with a C variable (e.g., with the command x/4xg <address>)

e Other useful commands can be found in the gdb lab
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Endianness

How bytes are read out from memory.

In little-endian representation, Isbs are stored in the (gdb’ X/ 4X9 bUff

lowest memory address. Ox1555056600:  0x620726566667562  Ox207767666726576
In big endian representation, msbs are stored at the (R4 IRRsLI/ LR TRTOPAN o 0x0000001555056800
smallest address. (gdb) p/X buff[0]

You are working with a little endian machine which makes $1 = 0X62
a lot of sense (since Isbs are in lowest addresses) (gdb) I
Sometimes confuses people when doing "print

debugging”, since we read from left-to-right (i.e., msb to
sb) e  Here, the byte at address 0x1555d566b0 is Ox62.

, , , e The byte at address 0x1555d566b1 is Ox75.
When crafting a buffer and storing particular values (e.g.,
The list of bytes starting at address 0x1555d566b0 and ending at
address 0x1555d566b7 is [0x62, 0x75, 0x66, 0x66....]
e  But gdb printed the double word in opposite order.

[ J
an address) in it, be sure that your script prints the Isbs in

the double word first.
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Good Luck!



