CS 3410 Lab 8

Fall 2025

Cornell Bowers C1S
Computer Science

CS 3410 Fall 2025

Agenda
Intro to Buffer Overflow

Memory & Stack Layout

Useful GDB commands

Cornell Bowers GIS
Computer Science

Intro to Buffer Overflow

CS 3410 Fall 2025

Buffer Overflow

e \Well-known security vulnerability that can be used to effectively exploit unprotected
programs.

e (Occurs when some user input is written to a fixed length buffer and the size of the user input
exceeds the size of the buffer being written into.

e [f this happens, the extra input overflows into adjacent memory locations on the stack,
overwriting their data.

e (Can cause major problems if important data like the sp or ra are overwritten.

e [E.g - overwriting the ra can lead to a segfault (caused by attempting to access restricted /
nonexistent memory addresses).

e Hackers can use these vulnerabilities to force programs to do what they want (this type of
deliberate attack is called stack smashing).

Cornell Bowers C1S
Computer Science

Memory & Stack Layout

CS 3410 Fall 2025

Review of memory Segments (you have learned)

e Stack- Memory segment used for function calls.
o stack frames for each function call
o frames store local variables, function args, frame
pointer, register backups, and return addresses.
e Heap - Dynamically allocated memory memory segment
o used for objects and data that persist beyond
function calls.
e Data - Stores global and static variables.
e Text/Code- Contains the compiled executable code (machine
instructions to be run) of a program.

Cornell Bowers CIS
Computer Science

system
reserved

stack

heap

Text/Code

CS 3410 Fall 2025

Stack Layout with a Buffer

blue's blue’sra
stack saved fp blUE() {
frame|l saved regs . \
pw— pink(0,1,2,3,4,5);
pink’s ra }
pink’s blue’s fp pink(int @, int b, intc, intd, inte, intf){
stack | saved regs int x;
rame X . (10,11,12,13,14);
fp-> | args for orange }
orange’sra inge(int q, int b, intc, int, d, inte) {
el pinksfp char buf[100];
frame | saved regs gets(buf); // no bounds check!
sp> buf[100] -

Cornell Bowers CIS
Computer Science

Useful GDB Commands

CS 3410 Fall 2025

Useful GDB Commands

e info frame/if - lists information about the stack frame

e info registers - prints out the value of all RISC-V registers

e p buff - prints out the value of the variable buff

e p &buff - prints out the address where buff is located

e X/4xg buff - prints out 4 double words in hex starting at the address buff is pointing to

e p/x buff[Q] - prints the first character of buff in hex

e stepi - step one instruction

e display/i $pc - print the current instruction

e (Can also directly print out data at a particular address, whether or not that address is
associated with a C variable (e.g., with the command x/4xg <address>)

e Other useful commands can be found in the gdb lab

Cornell Bowers GIS
Computer Science

—Nndianness

10

CS 3410 Fall 2025

Endianness

How bytes are read out from memory.

In little-endian representation, Isbs are stored in the (gdb’ X/ 4X9 bUff

lowest memory address. Ox1555056600: 0x620726566667562 Ox207767666726576
In big endian representation, msbs are stored at the (R4 IRRsLI/ LR TRTOPAN o 0x0000001555056800
smallest address. (gdb) p/X buff[0]

You are working with a little endian machine which makes $1 = 0X62
a lot of sense (since Isbs are in lowest addresses) (gdb) I
Sometimes confuses people when doing "print

debugging”, since we read from left-to-right (i.e., msb to
sb) e Here, the byte at address 0x1555d566b0 is Ox62.

, , , e The byte at address 0x1555d566b1 is Ox75.
When crafting a buffer and storing particular values (e.g.,
The list of bytes starting at address 0x1555d566b0 and ending at
address 0x1555d566b7 is [0x62, 0x75, 0x66, 0x66....]
e But gdb printed the double word in opposite order.

[J
an address) in it, be sure that your script prints the Isbs in

the double word first.

Cornell Bowers C1S 11
Computer Science

Good Luck!

