
CS 3410 Lab 8
Fall 2025

1

CS 3410 Fall 2025

Agenda

1 Intro to Buffer Overflow

2 Memory & Stack Layout

2

3 Useful GDB commands

4 Endianness

Intro to Buffer Overflow

3

CS 3410 Fall 2025

Buffer Overflow

● Well-known security vulnerability that can be used to effectively exploit unprotected

programs.

● Occurs when some user input is written to a fixed length buffer and the size of the user input

exceeds the size of the buffer being written into.

● If this happens, the extra input overflows into adjacent memory locations on the stack,

overwriting their data.

● Can cause major problems if important data like the sp or ra are overwritten.

● E.g - overwriting the ra can lead to a segfault (caused by attempting to access restricted /

nonexistent memory addresses).

● Hackers can use these vulnerabilities to force programs to do what they want (this type of

deliberate attack is called stack smashing).

4

Memory & Stack Layout

5

CS 3410 Fall 2025

Review of memory Segments (you have learned)

● Stack- Memory segment used for function calls.

○ stack frames for each function call

○ frames store local variables, function args, frame

pointer, register backups, and return addresses.

● Heap - Dynamically allocated memory memory segment

○ used for objects and data that persist beyond

function calls.

● Data - Stores global and static variables.

● Text/Code- Contains the compiled executable code (machine

instructions to be run) of a program.

6

CS 3410 Fall 2025

Stack Layout with a Buffer

7

Useful GDB Commands

8

CS 3410 Fall 2025

Useful GDB Commands

● info frame/ i f - lists information about the stack frame

● info registers - prints out the value of all RISC-V registers

● p buff - prints out the value of the variable buff

● p &buff - prints out the address where buff is located

● x/4xg buff - prints out 4 double words in hex starting at the address buff is pointing to

● p/x buff[0] - prints the first character of buff in hex

● stepi - step one instruction

● display/i $pc - print the current instruction

● Can also directly print out data at a particular address, whether or not that address is

associated with a C variable (e.g., with the command x/4xg <address>)

● Other useful commands can be found in the gdb lab

9

Endianness

10

CS 3410 Fall 2025

Endianness

● How bytes are read out from memory.

● In little-endian representation, lsbs are stored in the

lowest memory address.

● In big endian representation, msbs are stored at the

smallest address.

● You are working with a little endian machine which makes

a lot of sense (since lsbs are in lowest addresses)

● Sometimes confuses people when doing "print

debugging", since we read from left-to-right (i.e., msb to

lsb)

● When crafting a buffer and storing particular values (e.g.,

an address) in it, be sure that your script prints the lsbs in

the double word first.

11

● Here, the byte at address 0x1555d566b0 is 0x62.

● The byte at address 0x1555d566b1 is 0x75.

● The list of bytes starting at address 0x1555d566b0 and ending at

address 0x1555d566b7 is [0x62, 0x75, 0x66, 0x66….]

● But gdb printed the double word in opposite order.

Good Luck!

12

