
CS 3410 Lab 5
Fall 2025

1

CS 3410 Fall 2025

Agenda

1 Circuit Waveform Practice

2 CPU Overview

3 Decoding and Encoding

Circuit Waveform Practice

3

CPU Overview

4

CS 3410 Fall 2025 A 5-Stage RISC Processor

5

CS 3410 Fall 2025 Stage 1: Fetch

6

Instruction Memory:

- Stores instructions to execute
on the CPU

Program Counter (PC):

- Points to the next instruction to
execute

- Increments by 4 (1 word) to get
next instruction

- Or by an immediate when we
need to jump or branch

CS 3410 Fall 2025 Stage 2: Decode

7

Decode parts of the instruction to
decide how to execute it

Register File:

- Extract values for `rs1`, `rs2` and
`rd` registers

- Extract immediate, sign-extend
to convert to 64-bit number

Note: Not all instructions will use
`rs1`, `rs2` or `rd` registers

CS 3410 Fall 2025 Stage 3: Exec

8

Adder (top):

- Calculate PC + offset. This
may or may not be used
depending on the instruction

ALU:

- Performs an operation using
`rs1` and either `rs2` or
`immediate`.

- Type of op also depends on
instruction

CS 3410 Fall 2025 Stage 4: Memory

9

Data Memory:

- May carry out either a read or
write operation, depending on
instruction

- If write, this stage writes data
from a register to a particular
address

- If read, it reads from a
particular location and forwards
it to the next stage

CS 3410 Fall 2025 Stage 5: Writeback

10

The mux decides what value to
write back to the register file.

- For load instructions, write the
output from memory to the
‘Write data’ register

- For arithmetic instructions (like
add), write back the ALU
output to the ‘Write data’
register

Note: Not all instructions will use
this stage (think store instructions)

Decoding and Encoding

11

CS 3410 Fall 2025 I-type Instructions

12

31 – 20 19 – 15 14 – 12 11 – 7 6 – 0

imm[11:0] rs1 funct3 rd opcode

- `addi` and `andi` are examples of I-type
instructions

CS 3410 Fall 2025 I-type Instructions

13

31 – 20 19 – 15 14 – 12 11 – 7 6 – 0

imm[11:0] rs1 funct3 rd opcode

- `addi` and `andi` are examples of I-type
instructions

- We use the opcode and funct3 (and
sometimes funct7) bits of the instruction to
decide how the instruction will execute

CS 3410 Fall 2025 I-type Instructions

14

31 – 20 19 – 15 14 – 12 11 – 7 6 – 0

imm[11:0] rs1 funct3 rd opcode

- `addi` and `andi` are examples of I-type
instructions

- We use the opcode and funct3 (and
sometimes funct7) bits of the instruction to
decide how the instruction will execute

Instruction opcode funct3

addi 0010011 000

andi 0010011 111

Relevant opcode and funct3 bits for addi and
andi

CS 3410 Fall 2025

Some useful tips for the assignment

- Use the `info` struct to store metadata about your instruction, including what
type it is. We provide a mapping from instructions to integers via the #define
macros in sol.h.

- Think how the `memory` stage will be used in the lab (hint: I-type
instructions won’t need read or write!). We should propagate some
information to the Writeback stage to use the output from the ALU and not the
Memory.

- After using the memory stage to send the information from execute to
writeback, consider how your writeback stage should update the state of the
program(the PC counter) to prepare it for the next instruction. (maybe PC + 4?)

15

CS 3410 Fall 2025

How to test your implementation

- Make sure you clone the assignment repo and your terminal is under that folder
- To test your implementation for the assignment, follow the following steps:

- Compile your implementation with “rv make”.
- Write a test script in RISC-V assembly. We have an example test in the

release file called check.s
- Compile the test script using “rv asbin check.s”
- Run the implementation using “rv qemu runner < check.s”
- You can also initialize the registers, such as “rv qemu runner 1@0x1 <

check.s”
- All these information can be found in the assignment instruction.

16

