
CS 3410 Lab 4
Fall 2025

1



CS 3410 Fall 2025

Agenda

1 C Review

2 Address Sanitization

2

3 GDB Intro

4 GDB Exercise



C Review

3



Address Sanitization

4



CS 3410 Fall 2025

Out-of-bounds memory read

This code reads from uninitialized memory!

Running and compiling normally prints an arbitrary value like “1440050536”

5



CS 3410 Fall 2025

Why did it print garbage?

- x[2] is *(x + 2*sizeof(int))

- x only has two elements…

- x[2] will read out of bounds!

- But this is still totally valid
- Memory is bytes, and bytes form an int

- Address sanitization (ASan) adds checks 

6

Address Variable Value

0x12 x 0x42

0x3E -- 0

0x42 x[0] 42

0x46 x[1] 3410

0x4A -- 1440050536

garbage



CS 3410 Fall 2025

Address sanitization to the rescue!

Enable ASan with the -fsanitize=address gcc flag and rerun…

7

ASan found 
the out of 
bounds 
read!



GDB Intro

8



CS 3410 Fall 2025

Introduction to GDB

- GDB can start, stop, and inspect the execution of a program (and more!)

- After initial setup, GDB will prompt you to enter commands

- A “breakpoint” is a line of source code where you would like to stop execution

- Typical usage: set breakpoint → run until it’s hit → inspect program state

Note: using GDB is a bit tricky with rv, read our setup instructions carefully!

9



CS 3410 Fall 2025

Common GDB commands

- break func and break line set breakpoints (b for short)

- next (n), step (s), continue (c), and finish move the debugger forward

- info locals shows variables, info args shows arguments 

- print expr will evaluate expr and print the result (p for short)
- print/a expr interprets expr as an address, /t does binary

- print *arr@num will print the first num elements of arr

- list shows the next 10 lines around the debugger location

10



CS 3410 Fall 2025

Stepping through a bugged program

- This simple program has a bug!

- Should print “a = 6, b = 5”

- Actually prints “a = 6, b = 6”

- We will debug this with GDB

11



CS 3410 Fall 2025

Stepping through a bugged program

Our debugging workflow:

1. Set breakpoint on main

2. Continue execution until main

3. Step until inside swap

12



CS 3410 Fall 2025

Stepping through a bugged program

Our debugging workflow:

1. Set breakpoint on main

2. Continue until main

3. Step until inside swap

4. Print values when stepping

5. Show all local variables

We found the bug!

13



CS 3410 Fall 2025

That’s 1% of GDB’s true power…

- This usage was similar to print statement debugging

- GDB can do much more, such as:

- Stop program execution when a condition is true

- Inspect the state of the program, such as viewing and searching memory

- Print a backtrace and inspect variables after a segfault

- View the assembly corresponding to the current instruction

14



CS 3410 Fall 2025

GDB Exercise

Common GDB commands, for reference:

- break func and break line set breakpoints (b for short)

- next (n), step (s), continue (c), and finish move the debugger forward

- info locals shows variables, info args shows arguments 

- print expr will evaluate expr and print the result (p for short)
- print/a expr interprets expr as an address, /t does binary

- print *arr@num will print the first num elements of arr

- list shows the next 10 lines around the debugger location

15


