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Agenda

1 C Review

2 Address Sanitization

2

3 GDB Intro

4 GDB Exercise



C Review
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Address Sanitization
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Out-of-bounds memory read

This code reads from uninitialized memory!

Running and compiling normally prints an arbitrary value like “1440050536”

5



CS 3410 Fall 2025

Why did it print garbage?

- x[2] is *(x + 2*sizeof(int))

- x only has two elements…

- x[2] will read out of bounds!

- But this is still totally valid
- Memory is bytes, and bytes form an int

- Address sanitization (ASan) adds checks 
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Address Variable Value

0x12 x 0x42

0x3E -- 0

0x42 x[0] 42

0x46 x[1] 3410

0x4A -- 1440050536

garbage



CS 3410 Fall 2025

Address sanitization to the rescue!

Enable ASan with the -fsanitize=address gcc flag and rerun…
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ASan found 
the out of 
bounds 
read!



GDB Intro
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Introduction to GDB

- GDB can start, stop, and inspect the execution of a program (and more!)

- After initial setup, GDB will prompt you to enter commands

- A “breakpoint” is a line of source code where you would like to stop execution

- Typical usage: set breakpoint → run until it’s hit → inspect program state

Note: using GDB is a bit tricky with rv, read our setup instructions carefully!
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Common GDB commands

- break func and break line set breakpoints (b for short)

- next (n), step (s), continue (c), and finish move the debugger forward

- info locals shows variables, info args shows arguments 

- print expr will evaluate expr and print the result (p for short)
- print/a expr interprets expr as an address, /t does binary

- print *arr@num will print the first num elements of arr

- list shows the next 10 lines around the debugger location
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Stepping through a bugged program

- This simple program has a bug!

- Should print “a = 6, b = 5”

- Actually prints “a = 6, b = 6”

- We will debug this with GDB
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Stepping through a bugged program

Our debugging workflow:

1. Set breakpoint on main

2. Continue execution until main

3. Step until inside swap
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Stepping through a bugged program

Our debugging workflow:

1. Set breakpoint on main

2. Continue until main

3. Step until inside swap

4. Print values when stepping

5. Show all local variables

We found the bug!
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That’s 1% of GDB’s true power…

- This usage was similar to print statement debugging

- GDB can do much more, such as:

- Stop program execution when a condition is true

- Inspect the state of the program, such as viewing and searching memory

- Print a backtrace and inspect variables after a segfault

- View the assembly corresponding to the current instruction
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GDB Exercise

Common GDB commands, for reference:

- break func and break line set breakpoints (b for short)

- next (n), step (s), continue (c), and finish move the debugger forward

- info locals shows variables, info args shows arguments 

- print expr will evaluate expr and print the result (p for short)
- print/a expr interprets expr as an address, /t does binary

- print *arr@num will print the first num elements of arr

- list shows the next 10 lines around the debugger location
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