CS 3410 Lab 4

Fall 2025

Cornell Bowers C1S
Computer Science

CS 3410 Fall 2025

Agenda

C Review
Address Sanitization

GDB Intro

GDB Exercise

Cornell Bowers CIS
Computer Science

Review

Address Sanitization

CS 3410 Fall 2025
Out-of-bounds memory read

This code reads from uninitialized memory!

#include <stdio.h>

int main() {

Cornell Bowers CIS
Computer Science

CS 3410 Fall 2025

Why did it print garbage?

- x[2]is* (x + 2*sizeof(int)) Address Variable Value
- xonly has two elements... 0x12 X Ox42
- x[2] will read out of bounds! Ox3E -- 0
- But this is still totally valid 0x42 x[0] 42
Memory is bytes, and bytes form an int Ox46 x[1] 3410
- Address sanitization (ASan) adds checks OxAA . 1440950536
Qarbage/'

Cornell Bowers C1S
Computer Science

CS 3410 Fall 2025
Address sanitization to the rescue!

Enable ASan with the -fsanitize=address gcc flag and rerun...

> rv gcc -fsanitize=address bad.c && rv gemu a.out

=1==ERROR: AddressSanitizer: stack-buffer-overflow on address 0x001557b09028 at pc
0x000000010af8 bp 0x001555d56b50 sp 0x001555d56b38

READ of size 4 at 0x001557b09028 thread TO

#0 0x10af6 in main (/root/a.out+0x10af6)

#1 0x15564bb922 in __libc_start_call_main (/lib/libc.so.6+0x2b922)

#2 0x15564bbade in __libc_start_main@GLIBC_2.27 (/lib/libc.so.6+0x2ba0e)

#3 0x108aa in _start (/root/a.out+0x108aa)

Address 0x001557b09028 is located in stack of thread TO at offset 40 in frame ASan found
#0 0x1095a in main (/root/a.out+0x1095a) the out of
This frame has 1 object(s): anﬂ?dS
[32, 40) 'x' (line 4) <== Memory access at offset 40 overflows this variable read!

HINT: this may be a false positive 1f your program uses some custom stack unwind me
chanism, swapcontext or vfork

(longjmp and C++ exceptions *arex supported)
SUMMARY: AddressSanitizer: stack-buffer-overflow (/root/a.out+0x10af6) in main

Cornell Bowers CIS
Computer Science

GD

S Intro

CS 3410 Fall 2025

Introduction to GDB

GDB can start, stop, and inspect the execution of a program (and more!)

After initial setup, GDB will prompt you to enter commands

Reading symbols from a.out...

(gdb) <you would enter a gdb command here>

A “breakpoint” is a line of source code where you would like to stop execution

Typical usage: set breakpoint — run until it’s hit — inspect program state

Note: using GDB is a bit tricky with rv, read our setup instructions carefully!

Cornell Bowers CIS
Computer Science

CS 3410 Fall 2025
Common GDB commands

- break func and break 1line set breakpoints (b for short)
- next (n), step (s), continue (c), and finish move the debugger forward
- info locals shows variables, info args shows arguments

- print expr wil evaluate expr and print the result (p for short)
print/a expr interprets expr as an address, /t does binary

print *arr@num wil print the first num elements of arr

- list shows the next 10 lines around the debugger location

Cornell Bowers C1S
Computer Science

10

Stepping through a bugged program

- This simple program has a bug!

- Shouldprint “a = 6, b = 5"

- Actually prints “a = 6, b = 6"
- We will debug this with GDB

#include <stdio.h>

void swap(int *x, int *y) {

Cornell Bowers CIS
Computer Science

11

CS 3410 Fall 2025

Stepping through a bugged program

Our debugging workflow: Rl e e
Breakpoint 1 at 0x105ac: file bug.c, line 9.
. ' (gdb) continue
1. Set breakpoint on main Centinuing.
2. (Continue execution until main Breakpoint 1, main () at bug.c:9
9 int a = 5;
o : (gdb) step
3. Step until inside swap 10 T B

gdb) step

11 swap(&a, &b);

(gdb) step

swap (x=0x1555d56bbc, y=0x1555d56bb8) at bug.c:4
4 X =AY

Cornell Bowers CIS
Computer Science

12

CS 3410 Fall 2025

Stepping through a bugged program

Our debugging workflow:

1. Set breakpoint on main

2. Continue until main

3. Step until inside swap

4. Print values when stepping
5. Show all local variables
We found the bug!

Cornell Bowers CIS
Computer Science

(gdb) print

) print

(gdb) step

5

gdb) print

$3 =6

gdb) print

$4 = 6

(gdb) step

6 }

(gdb) step

main () at bug.c:12
12 printf("a = %d, b
gdb) info locals
a==6

b

13

CS 3410 Fall 2025

That's 1% of GDB'’s true power...

- This usage was similar to print statement debugging

- GDB can do much more, such as:
Stop program execution when a condition is true
Inspect the state of the program, such as viewing and searching memory
Print a backtrace and inspect variables after a segfault

View the assembly corresponding to the current instruction

Cornell Bowers C1S
Computer Science

14

CS 3410 Fall 2025

GDB Exercise

Common GDB commands, for reference:

break func and break 1line set breakpoints (b for short)
next (n), step (s), continue (c), and finish move the debugger forward
info locals shows variables, info args shows arguments

print expr will evaluate expr and print the result (p for short)
- print/a expr interprets expr as an address, /t does binary

- print *arr@num wil print the first num elements of arr

1list shows the next 10 lines around the debugger location

Cornell Bowers C1S
Computer Science

15

