
CS 3410 Lab 3
Fall 2025

1



CS 3410 Fall 2025

Agenda

1 C Memory Management

2 Linked List

2

3 Implementing Linked List in C

4 A3 Tips



C Memory Management

3



CS 3410 Fall 2025

The Heap

● The heap is an area of memory below the stack that 
grows up towards higher addresses

● Unlike the stack, where memory goes away when a 
function finishes, the heap provides memory that 
persists until the caller is done with it

4



CS 3410 Fall 2025

How do we access memory on the heap? 

● malloc(): Request a pointer to a contiguous block of memory on the heap
● free(): Release or deallocate the allocated memory back to the operating 

system

5



CS 3410 Fall 2025

malloc() and free() syntax

6



CS 3410 Fall 2025

Rule of Thumb

Every call to malloc() should have a corresponding call to free()
● An allocation that is not freed by the time the program ends is called a 

Memory Leak

7



CS 3410 Fall 2025

Exercise: Draw out the references between memory blocks.

Note: Assume all the addresses 
are of 2 bytes and the integer 
defaults to 4 bytes.

8

Stack
Address Name Value

0xFFFF

0xFFFE

0xFFFD

0xFFFC

0xFFFB

0xFFFA

0xFFF9

0xFFF8

0xFFF7

0xFFF6

0xFFF5

0xFFF4

0x0008

0x0007

0x0006

0x0005

0x0004

0x0003

0x0002

0x0001

0x0000

Address Name Value

Heap



CS 3410 Fall 2025

Exercise: Draw out the references between memory blocks.

Note: Assume all the addresses 
are of 2 bytes and the integer 
defaults to 4 bytes.

9

Stack
Address Name Value

0xFFFF

c 10
0xFFFE

0xFFFD

0xFFFC

0xFFFB

d 5
0xFFFA

0xFFF9

0xFFF8

0xFFF7

0xFFF6

0xFFF5

0xFFF4

0x0008

0x0007

0x0006

0x0005

0x0004

0x0003

0x0002

0x0001

0x0000

Address Name Value

Heap



CS 3410 Fall 2025

Exercise: Draw out the references between memory blocks.

Note: Assume all the addresses 
are of 2 bytes and the integer 
defaults to 4 bytes.

10

Stack
Address Name Value

0xFFFF

c 10
0xFFFE

0xFFFD

0xFFFC

0xFFFB

d 5
0xFFFA

0xFFF9

0xFFF8

0xFFF7

0xFFF6

0xFFF5

0xFFF4

0x0008

0x0007

0x0006

0x0005

0x0004

0x0003

0x0002

0x0001

0x0000

Address Name Value

Heap



CS 3410 Fall 2025

Exercise: Draw out the references between memory blocks.

Note: Assume all the addresses 
are of 2 bytes and the integer 
defaults to 4 bytes.

11

Stack
Address Name Value

0xFFFF

c 10
0xFFFE

0xFFFD

0xFFFC

0xFFFB

d 5
0xFFFA

0xFFF9

0xFFF8

0xFFF7
a

0xFFF6

0xFFF5

0xFFF4

0x0008

c copy 10
0x0007

0x0006

0x0005

0x0004

0x0003

0x0002

0x0001

0x0000

Address Name Value

Heap



CS 3410 Fall 2025

Exercise: Draw out the references between memory blocks.

Note: Assume all the addresses 
are of 2 bytes and the integer 
defaults to 8 bytes.

12

Stack
Address Name Value

0xFFFF

c 10
0xFFFE

0xFFFD

0xFFFC

0xFFFB

d 5
0xFFFA

0xFFF9

0xFFF8

0xFFF7
a

0xFFF6

0xFFF5

0xFFF4

0x0008

c copy 10
0x0007

0x0006

0x0005

0x0004

0x0003

0x0002

0x0001

0x0000

Address Name Value

Heap



CS 3410 Fall 2025

Exercise: Draw out the references between memory blocks.

Note: Assume all the addresses 
are of 2 bytes and the integer 
defaults to 4 bytes.

13

Stack
Address Name Value

0xFFFF

c 10
0xFFFE

0xFFFD

0xFFFC

0xFFFB

d 5
0xFFFA

0xFFF9

0xFFF8

0xFFF7
a

0xFFF6

0xFFF5
b

0xFFF4

0x0008

c copy 5
0x0007

0x0006

0x0005

0x0004

0x0003

0x0002

0x0001

0x0000

Address Name Value

Heap



CS 3410 Fall 2025

Exercise: Draw out the references between memory blocks.

Note: Assume all the addresses 
are of 2 bytes and the integer 
defaults to 4 bytes.

14

Stack
Address Name Value

0xFFFF

c 10
0xFFFE

0xFFFD

0xFFFC

0xFFFB

d 5
0xFFFA

0xFFF9

0xFFF8

0xFFF7
a 0x0005

0xFFF6

0xFFF5
b 0xFFF6

0xFFF4

0x0008

c copy 5
0x0007

0x0006

0x0005

0x0004

0x0003

0x0002

0x0001

0x0000

Address Name Value

Heap



CS 3410 Fall 2025

Exercise: Draw out the references between memory blocks.

Note: Assume all the addresses 
are of 2 bytes and the integer 
defaults to 4 bytes.

15

Stack
Address Name Value

0xFFFF

c 10
0xFFFE

0xFFFD

0xFFFC

0xFFFB

d 5
0xFFFA

0xFFF9

0xFFF8

0xFFF7
a

0xFFF6

0xFFF5
b 0xFFF6

0xFFF4

0x0008

c copy 5
0x0007

0x0006

0x0005

0x0004

0x0003

0x0002

0x0001

0x0000

Address Name Value

Heap



Linked List

16



CS 3410 Fall 2025

Allocating space for more complex data structures
Consider the definition of a Linked List Node as follows:

17

0

NULL

1



CS 3410 Fall 2025

Allocating space for more complex data structures
Exercise: Draw out the memory allocation for the tiny linked list.
Mind that an address takes up 2 bytes

18

0

NULL

1

Stack
Address Name Value

0xFFFF

0xFFFE

0xFFFD

0xFFFC

0x000A

0x0009

0x0008

0x0007

0x0006

0x0005

0x0004

0x0003

0x0002

0x0001

0x0000

Address Name Value

Heap



CS 3410 Fall 2025

Allocating space for more complex data structures
Exercise: Draw out the memory allocation for the tiny linked list.
Mind that an address takes up 2 bytes

19

0

NULL

1

Stack
Address Name Value

0xFFFF
n0

0xFFFE

0xFFFD
n1

0xFFFC

0x000A

0x0009

0x0008

0x0007
n1->next NULL

0x0006

0x0005
n1->a_value 1

0x0004

0x0003
n0->next

0x0002

0x0001
n0->a_value 0

0x0000

Address Name Value

Heap



CS 3410 Fall 2025

Exercise: draw the linked list created by the following code

20



CS 3410 Fall 2025

Exercise: draw the linked list created by the following code

21

0 1 2



CS 3410 Fall 2025

Implement a linked list

Exercise: Implement the functionalities below in lab3.c
● Node *list_create(void *a_value) Initialize a Node containing the int 

value.
● Node *list_push_to_front(Node *a_head, void *a_value) Wrap the 

value in a node and make it the new head of the list.
● Node *list_pop_last(Node *a_head) Pop the last node of the list.
● void list_free(Node *a_head) Free the memory taken by the entire linked 

list.

22



CS 3410 Fall 2025

Memory Management of the linked list

● Allocate node memory in list_init or list_add_to_front. 
● To free your memory: 

○ Remember to manually free all the nodes and the integer pointers that they contain after popping 
them from the list.

○ Before exiting your main, always free all the nodes left in the queue via list_free.

23



A3 Tips

24



CS 3410 Fall 2025

Start early, start early, start early!

● This assignment has many intricacies. To give yourself enough time to test the 
functionality end-to-end, you’ll want to start early.

● Test thoroughly! We’ve provided a unit-testing framework for you to use with 
test files already started for you. Add more tests as you need them to make sure 
your code is correct.

○ This applies to huffman.c as the complete test suite for Priority Queue is already given

25



CS 3410 Fall 2025

Hints

● In Task 1, you can implement stack_push by calling pq_enqueue and passing 
in NULL as the compare function. If you do this, you’ll need to think carefully 
about your implementation for pq_enqueue.

● In Task 1, you’ll also need to write a compare function to order the nodes in your 
priority queue. Nodes are sorted in ascending order, first by frequency, then by 
ASCII value. Follow this convention when implementing the function:

○ cmp_fn(a, b) < 0  —> a is ordered before b
○ cmp_fn(a, b) >= 0 —> a is ordered after b

The _cmp_int(...) function implemented in test_priority_queue.c follows this too
● Freeing memory for a TreeNode is different from freeing memory for a PQNode.
● Use the functions in utils.h to print out priority queues. You can make your 

own custom print function for TreeNode.

26



CS 3410 Fall 2025

Test your code!

● Testing before you get to Task 2 will be crucial. We’ve provided you with a 
simple unit-testing library called cu_unit.

● The structure of a unit test is as follows:

27



CS 3410 Fall 2025

Test your code!

● We can run the test by adding it to main():

28



CS 3410 Fall 2025

Test your code!

● Tests will not be graded for this assignment, but it’s a good idea to test your 
code before moving on to the next task, as we’ll be grading your code for each 
section individually.

● Test your priority queue with different types, comparison functions, etc.
● Test your Huffman tree on different files (C programs, for instance), and with a 

variety of characters.

29



CS 3410 Fall 2025

Remember!

● In A3 (not this lab), you must use our wrapper functions my_malloc() and 
my_free() for any allocations or deallocations.

● They follow the exact same syntax as malloc() and free() and perform the 
same kind of allocation/deallocation. 

● The only thing extra is that they log the operation, which will help you and us 
detect and pinpoint memory leaks in your implementation.

30



Good luck!

31


