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The Heap

● The heap is an area of memory below the stack that 
grows up towards higher addresses

● Unlike the stack, where memory goes away when a 
function finishes, the heap provides memory that 
persists until the caller is done with it
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How do we access memory on the heap? 

● malloc(): Request a pointer to a contiguous block of memory on the heap
● free(): Release or deallocate the allocated memory back to the operating 

system
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malloc() and free() syntax
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Rule of Thumb

Every call to malloc() should have a corresponding call to free()
● An allocation that is not freed by the time the program ends is called a 

Memory Leak
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Exercise: Draw out the references between memory blocks.

Note: Assume all the addresses 
are of 2 bytes and the integer 
defaults to 4 bytes.
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Stack
Address Name Value

0xFFFF

0xFFFE

0xFFFD

0xFFFC

0xFFFB

0xFFFA

0xFFF9

0xFFF8

0xFFF7

0xFFF6

0xFFF5

0xFFF4

0x0008

0x0007

0x0006

0x0005

0x0004

0x0003

0x0002

0x0001

0x0000

Address Name Value

Heap
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Exercise: Draw out the references between memory blocks.

Note: Assume all the addresses 
are of 2 bytes and the integer 
defaults to 4 bytes.
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Stack
Address Name Value

0xFFFF

c 10
0xFFFE

0xFFFD

0xFFFC

0xFFFB

d 5
0xFFFA

0xFFF9

0xFFF8

0xFFF7

0xFFF6

0xFFF5

0xFFF4

0x0008

0x0007

0x0006

0x0005

0x0004

0x0003

0x0002

0x0001

0x0000

Address Name Value

Heap
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Exercise: Draw out the references between memory blocks.

Note: Assume all the addresses 
are of 2 bytes and the integer 
defaults to 4 bytes.

10

Stack
Address Name Value

0xFFFF

c 10
0xFFFE

0xFFFD

0xFFFC

0xFFFB

d 5
0xFFFA

0xFFF9

0xFFF8

0xFFF7

0xFFF6

0xFFF5

0xFFF4

0x0008

0x0007

0x0006

0x0005

0x0004

0x0003

0x0002

0x0001

0x0000

Address Name Value

Heap
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Exercise: Draw out the references between memory blocks.

Note: Assume all the addresses 
are of 2 bytes and the integer 
defaults to 4 bytes.
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Stack
Address Name Value

0xFFFF

c 10
0xFFFE

0xFFFD

0xFFFC

0xFFFB

d 5
0xFFFA

0xFFF9

0xFFF8

0xFFF7
a

0xFFF6

0xFFF5

0xFFF4

0x0008

c copy 10
0x0007

0x0006

0x0005

0x0004

0x0003

0x0002

0x0001

0x0000

Address Name Value

Heap



CS 3410 Fall 2025

Exercise: Draw out the references between memory blocks.

Note: Assume all the addresses 
are of 2 bytes and the integer 
defaults to 8 bytes.
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Stack
Address Name Value

0xFFFF

c 10
0xFFFE

0xFFFD

0xFFFC

0xFFFB

d 5
0xFFFA

0xFFF9

0xFFF8

0xFFF7
a

0xFFF6

0xFFF5

0xFFF4

0x0008

c copy 10
0x0007

0x0006

0x0005

0x0004

0x0003

0x0002

0x0001

0x0000

Address Name Value

Heap
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Exercise: Draw out the references between memory blocks.

Note: Assume all the addresses 
are of 2 bytes and the integer 
defaults to 4 bytes.
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Stack
Address Name Value

0xFFFF

c 10
0xFFFE

0xFFFD

0xFFFC

0xFFFB

d 5
0xFFFA

0xFFF9

0xFFF8

0xFFF7
a

0xFFF6

0xFFF5
b

0xFFF4

0x0008

c copy 5
0x0007

0x0006

0x0005

0x0004

0x0003

0x0002

0x0001

0x0000

Address Name Value

Heap
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Exercise: Draw out the references between memory blocks.

Note: Assume all the addresses 
are of 2 bytes and the integer 
defaults to 4 bytes.
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Stack
Address Name Value

0xFFFF

c 10
0xFFFE

0xFFFD

0xFFFC

0xFFFB

d 5
0xFFFA

0xFFF9

0xFFF8

0xFFF7
a 0x0005

0xFFF6

0xFFF5
b 0xFFF6

0xFFF4

0x0008

c copy 5
0x0007

0x0006

0x0005

0x0004

0x0003

0x0002

0x0001

0x0000

Address Name Value

Heap
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Exercise: Draw out the references between memory blocks.

Note: Assume all the addresses 
are of 2 bytes and the integer 
defaults to 4 bytes.
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Stack
Address Name Value

0xFFFF

c 10
0xFFFE

0xFFFD

0xFFFC

0xFFFB

d 5
0xFFFA

0xFFF9

0xFFF8

0xFFF7
a

0xFFF6

0xFFF5
b 0xFFF6

0xFFF4

0x0008

c copy 5
0x0007

0x0006

0x0005

0x0004

0x0003

0x0002

0x0001

0x0000

Address Name Value

Heap



Linked List
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Allocating space for more complex data structures
Consider the definition of a Linked List Node as follows:
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0

NULL

1
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Allocating space for more complex data structures
Exercise: Draw out the memory allocation for the tiny linked list.
Mind that an address takes up 2 bytes
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0

NULL

1

Stack
Address Name Value

0xFFFF

0xFFFE

0xFFFD

0xFFFC

0x000A

0x0009

0x0008

0x0007

0x0006

0x0005

0x0004

0x0003

0x0002

0x0001

0x0000

Address Name Value

Heap
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Allocating space for more complex data structures
Exercise: Draw out the memory allocation for the tiny linked list.
Mind that an address takes up 2 bytes
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0

NULL

1

Stack
Address Name Value

0xFFFF
n0

0xFFFE

0xFFFD
n1

0xFFFC

0x000A

0x0009

0x0008

0x0007
n1->next NULL

0x0006

0x0005
n1->a_value 1

0x0004

0x0003
n0->next

0x0002

0x0001
n0->a_value 0

0x0000

Address Name Value

Heap



CS 3410 Fall 2025

Exercise: draw the linked list created by the following code
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Exercise: draw the linked list created by the following code
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Implement a linked list

Exercise: Implement the functionalities below in lab3.c
● Node *list_create(void *a_value) Initialize a Node containing the int 

value.
● Node *list_push_to_front(Node *a_head, void *a_value) Wrap the 

value in a node and make it the new head of the list.
● Node *list_pop_last(Node *a_head) Pop the last node of the list.
● void list_free(Node *a_head) Free the memory taken by the entire linked 

list.
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Memory Management of the linked list

● Allocate node memory in list_init or list_add_to_front. 
● To free your memory: 

○ Remember to manually free all the nodes and the integer pointers that they contain after popping 
them from the list.

○ Before exiting your main, always free all the nodes left in the queue via list_free.
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A3 Tips
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Start early, start early, start early!

● This assignment has many intricacies. To give yourself enough time to test the 
functionality end-to-end, you’ll want to start early.

● Test thoroughly! We’ve provided a unit-testing framework for you to use with 
test files already started for you. Add more tests as you need them to make sure 
your code is correct.

○ This applies to huffman.c as the complete test suite for Priority Queue is already given
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Hints

● In Task 1, you can implement stack_push by calling pq_enqueue and passing 
in NULL as the compare function. If you do this, you’ll need to think carefully 
about your implementation for pq_enqueue.

● In Task 1, you’ll also need to write a compare function to order the nodes in your 
priority queue. Nodes are sorted in ascending order, first by frequency, then by 
ASCII value. Follow this convention when implementing the function:

○ cmp_fn(a, b) < 0  —> a is ordered before b
○ cmp_fn(a, b) >= 0 —> a is ordered after b

The _cmp_int(...) function implemented in test_priority_queue.c follows this too
● Freeing memory for a TreeNode is different from freeing memory for a PQNode.
● Use the functions in utils.h to print out priority queues. You can make your 

own custom print function for TreeNode.
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Test your code!

● Testing before you get to Task 2 will be crucial. We’ve provided you with a 
simple unit-testing library called cu_unit.

● The structure of a unit test is as follows:
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Test your code!

● We can run the test by adding it to main():
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Test your code!

● Tests will not be graded for this assignment, but it’s a good idea to test your 
code before moving on to the next task, as we’ll be grading your code for each 
section individually.

● Test your priority queue with different types, comparison functions, etc.
● Test your Huffman tree on different files (C programs, for instance), and with a 

variety of characters.
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Remember!

● In A3 (not this lab), you must use our wrapper functions my_malloc() and 
my_free() for any allocations or deallocations.

● They follow the exact same syntax as malloc() and free() and perform the 
same kind of allocation/deallocation. 

● The only thing extra is that they log the operation, which will help you and us 
detect and pinpoint memory leaks in your implementation.
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Good luck!
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