Lab 2 Worksheet

1. Convert the following decimal numbers to our 8-bit floating-point format with a **3-bit exponent e** and a **4-bit significand g**: $\mathbf{s} \ \mathbf{e}_2 \mathbf{e}_1 \mathbf{e}_0 \ \mathbf{g}_3 \mathbf{g}_2 \mathbf{g}_1 \mathbf{g}_0$

Ste	nc	•
Jic	μs	•

- Convert integer and fractional parts to binary
- Normalize to the form $1.g_3g_2g_1g_0 \times 2^E$
- Adjust exponent with bias (add B = $2^{3-1}-1=3$)
- Set the sign bit

a. .	
	2.25
b.	
	-4.75
l	
С.	
	1.7

2. Convert the following floats from our 8-bit floating-point format with a **3-bit exponent e** and a **4-bit significand** into decimal numbers.

Steps:

- Extract the sign, exponent, and significand
- Normalize the significand: restore implied '1.' and remove trailing zeros.
- De-normalize to make exponent 0
- Convert the integer and fractional parts to decimals
- Set the sign according to sign bit

a.	
	1 101 1100

b.	
	1 001 0010
C.	
	0 010 0110
	What are the largest (excluding infinity) and smallest positive numbers that can be represented as 32-bit IEEE single precision floats (8-bit exponent, 23-bit significant)?
4 5	The device records that are represented the same in aux 9 hit float format and write them as a float
4. г	find two numbers that are represented the same in our 8-bit float format and write them as a float

We are now using our minifloat format instead of the IEEE-based 8-bit format we previously used.

5. Add the following numbers together using our 8-bit float format:

_		
C+v	nc	٠
Sie	มว	

- Adjust the mantissa of the number with the smaller exponent by shifting it right until both exponents match
- Add the mantissas together
- Recombine and renormalize the result if necessary

a.

	0 0	11	1010	+ (100	1010	(1.25 + 2.5)					
b.												
	0 1	100	0001		0 110	1000	(0.25 + 8.0	.)				_
	0 1	נטט	0001	+	9 110	1000	(0.25 + 8.0	1)				
c.												
-												
	0 1	L00	0111	+	9 100	1001	(1.75 + 2.25)					

6.	Multiply	these	numbers	together	using	minifloats:
v.	IVIGICIDIY	LIICSC	HUHHDCIS	LUECLIICI	using	minimoats.

Ste	nc.
Jie	ps.

- Find the sign of the product, determined by the sign bits of both numbers
- Add the exponents of the two numbers, then subtract the combined exponent bias of 6 to get the exponent value
- Multiply the mantissas together.
- Recombine and renormalize the result if necessary

a.

	0 011 1010 x 1 100 1010	(1.25 x -2.50)
b.		
	1 100 0001 x 1 110 1000	(-0.25 x -8.0)
C.		
	0 100 0111 x 0 100 1001	(1.75 x 2.25)