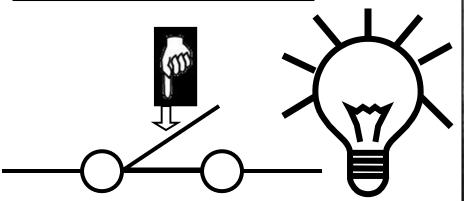


Gates and Logic: From Transistors to Logic Gates and Logic Circuits

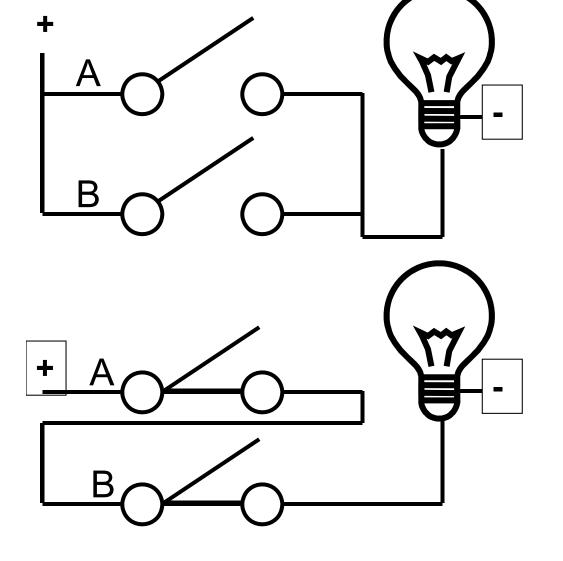
Prof. Hakim Weatherspoon CS 3410

Computer Science Cornell University

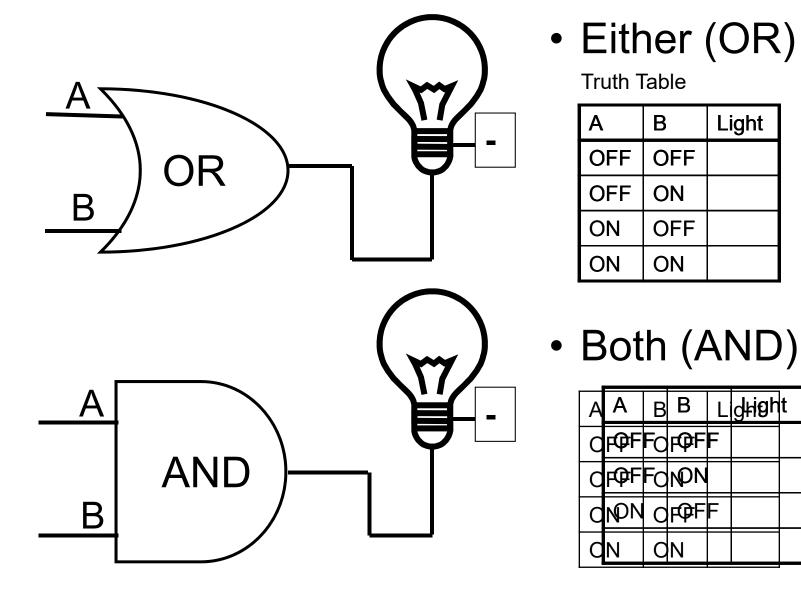
[Weatherspoon, Bala, Bracy, and Sirer]

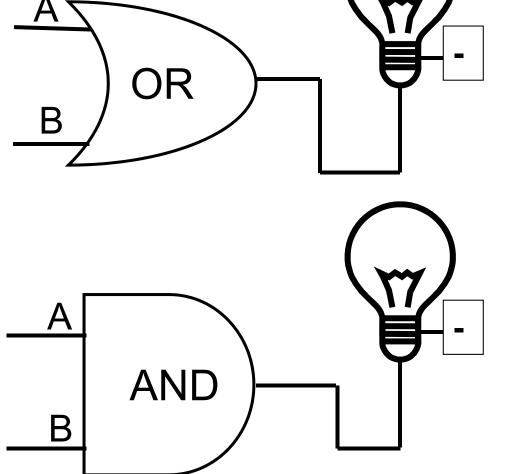

Goals for Today

- From Switches to Logic Gates to Logic Circuits
- Logic Gates
 - From switches
 - Truth Tables
- Logic Circuits
 - From Truth Tables to Circuits (Sum of Products)
 - Identity Laws
- Logic Circuit Minimization
 - Algebraic Manipulations
 - Truth Tables (Karnaugh Maps)
- Transistors (electronic switch)


Acts as a conductor or insulator.

Can be used to build amazing things...


The Bombe used to break the German Enigma machine during World War II

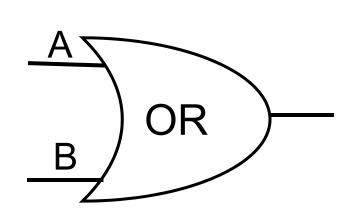


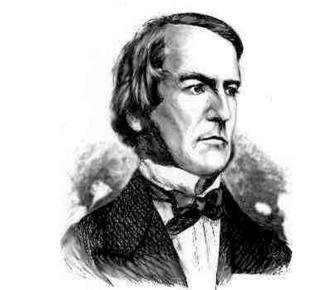
Truth Table

Α	В	Light
OFF	OFF	
OFF	ON	
ON	OFF	
ON	ON	

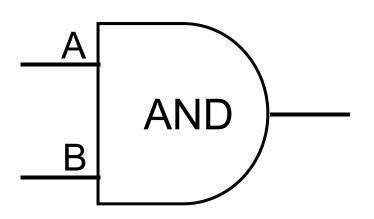
Α	Α	В	В	Li	<u>qh</u> tgh	t
Q	F o F		FGF	F		
С	FбF	F	ŊИ			
С	ŊΝ	O	FбF	F		
С	N	О	N			

Either (OR)


Truth Table

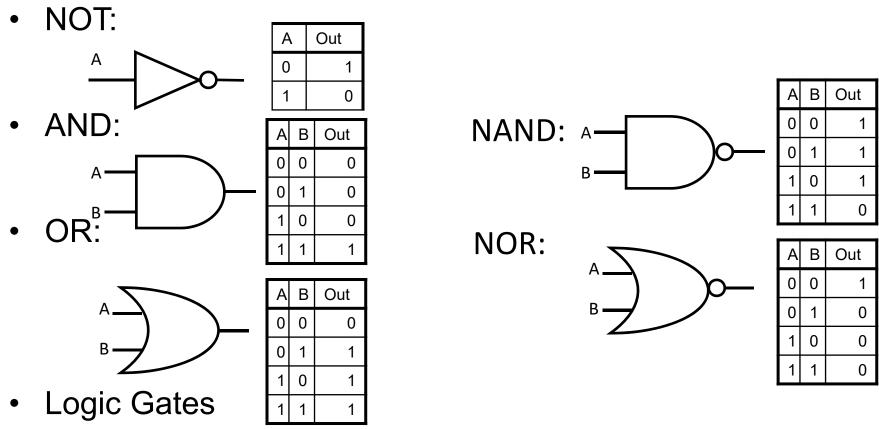

Α	В	Light
0FF	OFF	
O FF	ФΝ	
ΦΝ	O FF	
ФИ	ФΝ	

0 = OFF1 = ON


• Both (AND)

Α	В	Light
0	0	
0	1	
1	0	
1	1	

George Boole (1815-1864)



- Did you know?
- George Boole: Inventor of the idea of logic gates. He was born in Lincoln, England and he was the son of a shoemaker in a low class family.

Takeaway

 Binary (two symbols: true and false) is the basis of Logic Design

Building Functions: Logic Gates

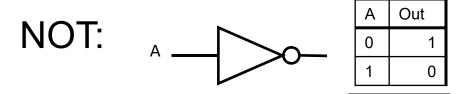
- digital circuit that either allows a signal to pass through it or not.
- Used to build logic functions
- There are seven basic logic gates:

AND, OR, NOT,

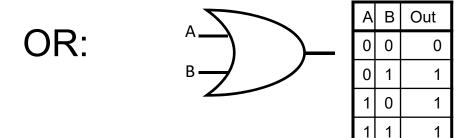
NAND (not AND), NOR (not OR), XOR, and XNOR (not XOR) [later]

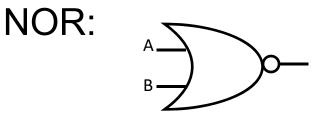
Goals for Today

- From Switches to Logic Gates to Logic Circuits
- Logic Gates
 - From switches
 - Truth Tables
- Logic Circuits
 - From Truth Tables to Circuits (Sum of Products)
 - Identity Laws
- Logic Circuit Minimization
 - Algebraic Manipulations
 - Truth Tables (Karnaugh Maps)
- Transistors (electronic switch)


Next Goal

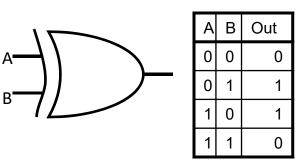
- Given a Logic function, create a Logic Circuit that implements the Logic Function...
- ...and, with the minimum number of logic gates
- Fewer gates: A cheaper (\$\$\$) circuit!

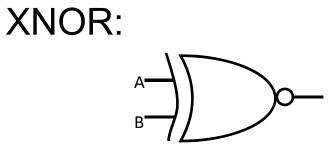

Logic Gates


Out

0

	Ī		0	0	1
NAND:	Α	<u> </u>	0	1	1
	В —		1	0	1
			1	1	0




Α	В	Out
0	0	1
0	1	0
1	0	0
1	1	0

АВ

Out

XOR:

Α	В	Out	
0	0	1	
0	1	0	
1	0	0	
1	1	1	
	_	0 0	0 0 1 0

Logic Implementation

• How to implement a desired logic function?

a	р	O	out
0	0	0	0
0	0	1	1
0	1	0	0
0	1	1	1
1	0	0	0
1	0	1	1
1	1	0	0
1	1	1	0

Logic Implementation

How to implement a desired logic function?

a	b	С	out	minterm
0	0	0	0	āБc
0	0	1	1	ābc
0	1	0	0	ābc
0	1	1	1	a b c
1	0	0	0	аБc
1	0	1	1	аБс
1	1	0	0	a b c
1	1	1	0	abc

- 1) Write minterms
- 2) sum of products:
- OR of all minterms where out=1

Logic Equations

- AND:
 - out $\frac{1}{7}$ a · b = a & b = a ^ b
- - out $= a + b = a | b = a \lor b$
- - out = $a \oplus b = a\bar{b} + \bar{a}b$

- - out $= \overline{a + b} = !(a \mid b) = \neg (a \lor b)$
- XNOR: $\sqrt{a \oplus b}$ ab + \overline{ab}

- Logic Equations
 - Constants: true = 1, false = 0
 - Variables: a, b, out, ...
 - Operators (above): AND, OR, NOT, etc.

Identities

Identities useful for manipulating logic equations

- For optimization & ease of implementation

$$a + 0 =$$

$$a + 1 =$$

$$a + \bar{a} =$$

$$a \cdot 0 =$$

$$a \cdot 1 =$$

$$a \cdot \bar{a} =$$

Identities

Identities useful for manipulating logic equations

For optimization & ease of implementation

$$\overline{(a+b)} =$$

$$\overline{(a \cdot b)} =$$

$$a + ab =$$

$$a(b+c) =$$

$$\overline{a(b+c)} =$$

Goals for Today

- From Switches to Logic Gates to Logic Circuits
- Logic Gates
 - From switches
 - Truth Tables
- Logic Circuits
 - From Truth Tables to Circuits (Sum of Products)
 - Identity Laws
- Logic Circuit Minimization why?
 - Algebraic Manipulations
 - Truth Tables (Karnaugh Maps)
- Transistors (electronic switch)

Checking Equality w/Truth Tables

circuits ↔ truth tables ↔ equations

Example: (a+b)(a+c) = a + bc

а	b	С			
0	0	0			
0	0	1			
0	1	0			
0	1	1			
1	0	0			
1	0	1			
1	1	0			
1	1	1			

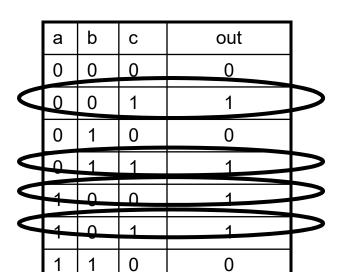
Takeaway

- Binary (two symbols: true and false) is the basis of Logic Design
- More than one Logic Circuit can implement same Logic function. Use Algebra (Identities) or Truth Tables to show equivalence.

Goals for Today

- From Switches to Logic Gates to Logic Circuits
- Logic Gates
 - From switches
 - Truth Tables
- Logic Circuits
 - From Truth Tables to Circuits (Sum of Products)
 - Identity Laws
- Logic Circuit Minimization
 - Algebraic Manipulations
 - Truth Tables (Karnaugh Maps)
- Transistors (electronic switch)

Karnaugh Maps

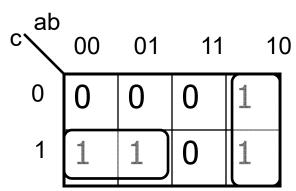

How does one find the most efficient equation?

- Manipulate algebraically until…?
- Use Karnaugh Maps (optimize visually)
- Use a software optimizer

For large circuits

Decomposition & reuse of building blocks

Minimization with Karnaugh maps (1)


0

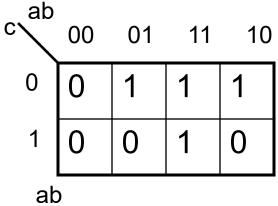
Sum of minterms yields

■ out =

Minimization with Karnaugh maps (2)

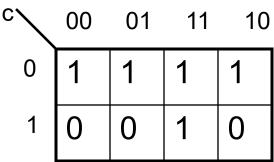
а	b	С	out
0	0	0	0
0	0	1	1
0	1	0	0
0	1	1	1
1	0	0	1
1	0	1	1
1	1	0	0
1	1	1	0

Sum of minterms yields

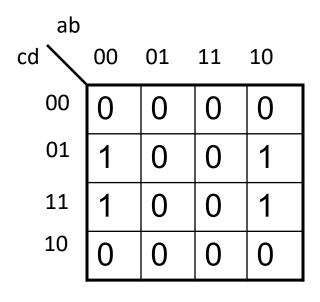

• out = \overline{abc} + \overline{abc} + \overline{abc} + \overline{abc}

Karnaugh map minimization

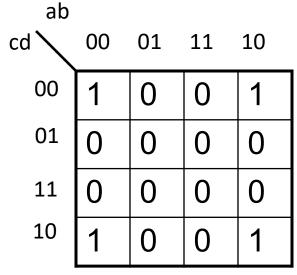
- Cover all 1's
- Group adjacent blocks of 2ⁿ
 1's that yield a rectangular shape
- Encode the common features of the rectangle

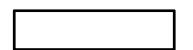

• out =
$$a\bar{b}$$
 + $\bar{a}c$

Karnaugh Minimization Tricks (1)

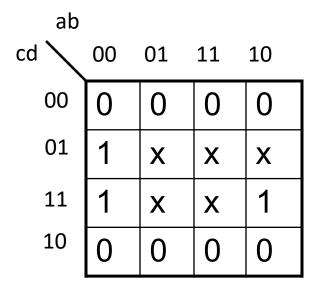


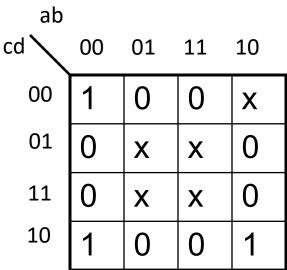
■ out =



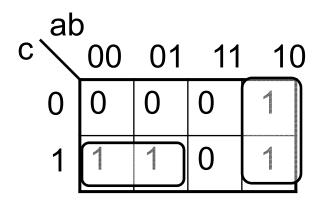

- Minterms can span 2, 4, 8 or more cells
 - out =

Karnaugh Minimization Tricks (2)




- The map wraps around
 - out =

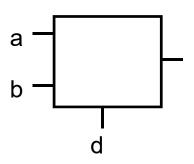
Karnaugh Minimization Tricks (3)



- "Don't care" values can be interpreted individually in whatever way is convenient
 - assume all x's = 1
 - out =

- assume middle x's = 0
- assume 4th column x = 1
- out =

Minimization with K-Maps


- (1) Circle the 1's (see below)
- (2) Each circle is a logical component of the final equation

$$= a\overline{b} + \overline{a}c$$

Rules:

- Use fewest circles necessary to cover all 1's
- Circles must cover only 1's
- Circles span rectangles of size power of 2 (1, 2, 4, 8...)
- Circles should be as large as possible (all circles of 1?)
- Circles may wrap around edges of K-Map
- 1 may be circled multiple times if that means fewer circles

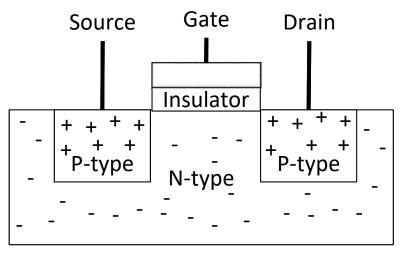
Multiplexer

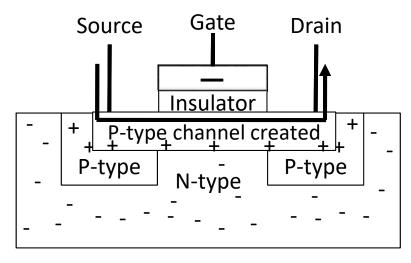
а	b	d	out
0	0	0	
0	0	1	
0	1	0	
0	1	1	
1	0	0	
1	0	1	
1	1	0	
1	1	1	

- A multiplexer selects between multiple inputs
 - out = a, if d = 0
 - out = b, if d = 1
- Build truth table
- Minimize diagram
- Derive logic diagram

Takeaway

- Binary (two symbols: true and false) is the basis of Logic Design
- More than one Logic Circuit can implement same Logic function. Use Algebra (Identities) or Truth Tables to show equivalence.
- Any logic function can be implemented as "sum of products". Karnaugh Maps minimize number of gates.


Goals for Today


- From Switches to Logic Gates to Logic Circuits
- Logic Gates
 - From switches
 - Truth Tables
- Logic Circuits
 - From Truth Tables to Circuits (Sum of Products)
 - Identity Laws
- Logic Circuit Minimization
 - Algebraic Manipulations
 - Truth Tables (Karnaugh Maps)
- Transistors (electronic switch)

Silicon Valley & the Semiconductor Industry

- Transistors:
- Youtube video "How does a transistor work" https://www.youtube.com/watch?v=IcrBqCFLHIY
- Break: show some Transistor, Fab, Wafer photos

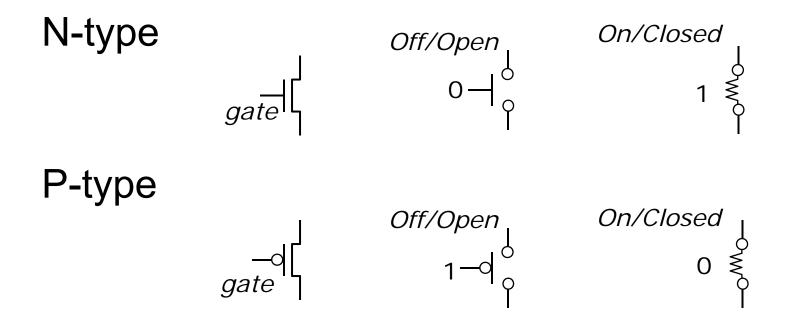
Transistors 101

P-Transistor Off

P-Transistor On

N-Type Silicon: negative free-carriers (electrons)

P-Type Silicon: positive free-carriers (holes)

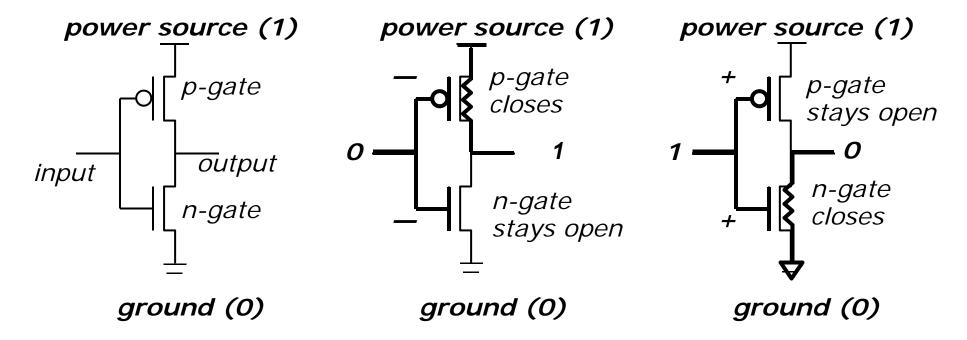

P-Transistor: negative charge on gate generates electric field that creates a (+ charged) p-channel connecting source & drain

N-Transistor: works the opposite way

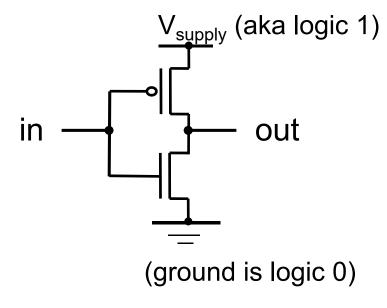
Metal-Oxide Semiconductor (Gate-Insulator-Silicon)

 Complementary MOS = CMOS technology uses both p- & ntype transistors

CMOS Notation

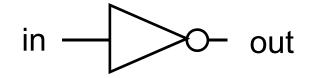

Gate input controls whether current can flow between the other two terminals or not.

Hint: the "o" bubble of the p-type tells you that this gate wants a 0 to be turned on


2-Transistor Combination: NOT

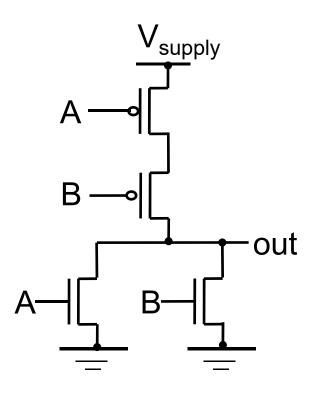
- Logic gates are constructed by combining transistors in complementary arrangements
- Combine p&n transistors to make a NOT gate:

CMOS Inverter :

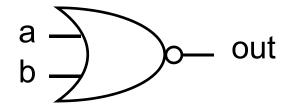


Inverter

Function: NOT

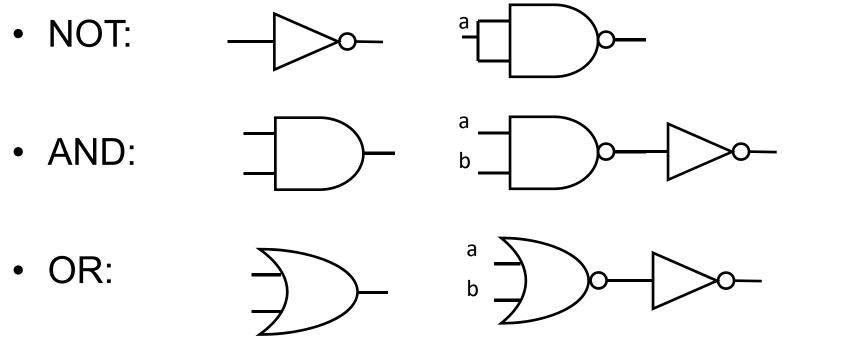

Symbol:

Truth Table:

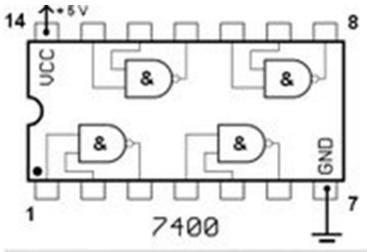

In	Out
0	1
1	0

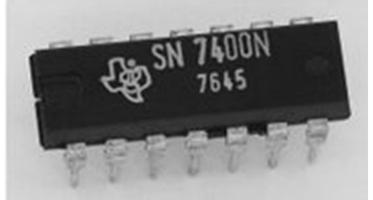
NOR Gate

Function: NOR

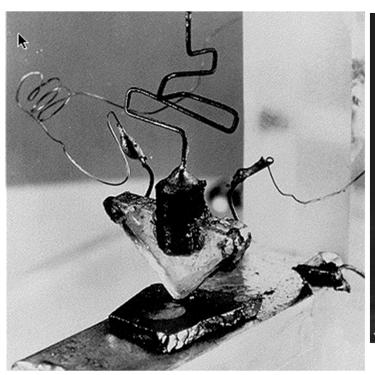

Symbol:

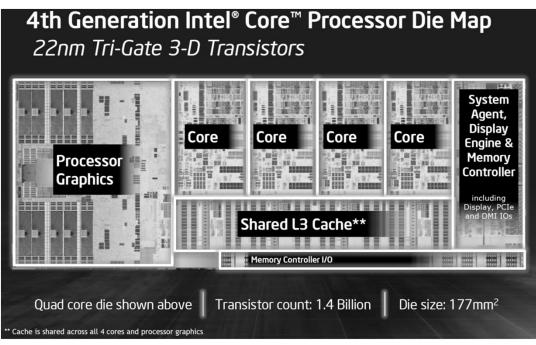
Truth Table:


Α	В	out
0	0	1
0	1	0
1	0	0
1	1	0


Building Functions (Revisited)

- NAND and NOR are universal
 - Can implement any function with NAND or just NOR gates
 - useful for manufacturing

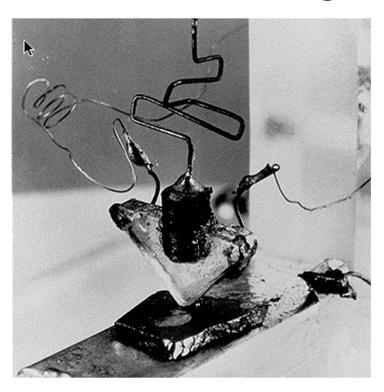

Logic Gates

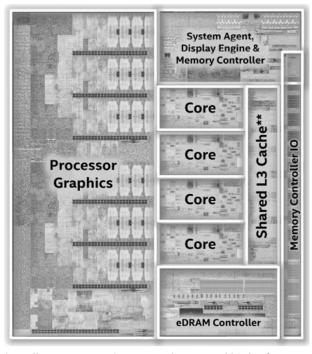


- One can buy gates separately
 - ex. 74xxx series of integrated circuits
 - cost ~\$1 per chip, mostly for packaging and testing
- Cumbersome, but possible to build devices using gates put together manually

Then and Now

http://techguru3d.com/4th-gen-intel-haswell-processors-architecture-and-lineup/


The first transistor


- One workbench at AT&T Bell Labs
- 1947
- Bardeen, Brattain, and Shockley

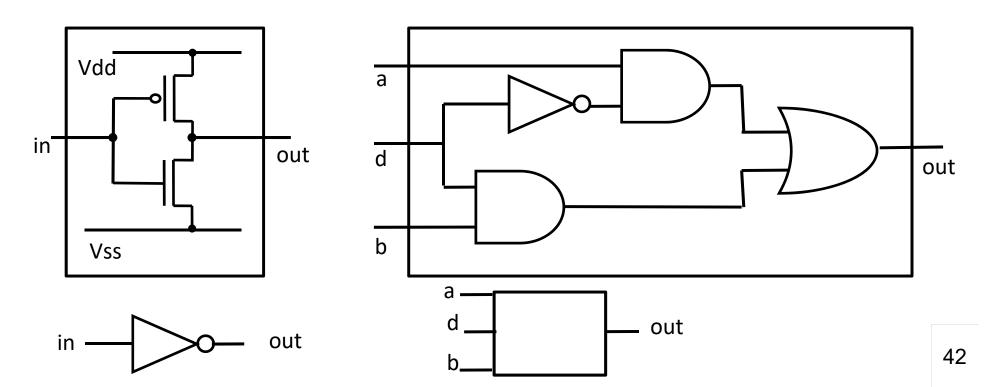
Intel Haswell

- 1.4 billion transistors, 22nm
- 177 square millimeters
- Four processing cores

Then and Now

https://www.computershopper.com/computex-2015/performance-preview-desktop-broadwell-at-computex-2015/performance-preview-

The first transistor


- One workbench at AT&T Bell Labs
- 1947
- Bardeen, Brattain, and Shockley

Intel Broadwell

- 7.2 billion transistors, 14nm
- 456 square millimeters
- Up to 22 processing cores

Big Picture: Abstraction

- Hide complexity through simple abstractions
 - Simplicity
 - Box diagram represents inputs and outputs
 - Complexity
 - Hides underlying NMOS- and PMOS-transistors and atomic interactions

Summary

- Most modern devices made of billions of transistors
 - You will build a processor in this course!
 - Modern transistors made from semiconductor materials
 - Transistors used to make logic gates and logic circuits
- We can now implement any logic circuit
 - Use P- & N-transistors to implement NAND/NOR gates
 - Use NAND or NOR gates to implement the logic circuit
 - Efficiently: use K-maps to find required minimal terms