
Gates and Logic:
From Transistors to Logic Gates and

Logic Circuits

[Weatherspoon, Bala, Bracy, and Sirer]

Prof. Hakim Weatherspoon
CS 3410

Computer Science
Cornell University

• From Switches to Logic Gates to Logic Circuits
• Understanding the foundations of

• Computer Systems Organization and Programming

Goals for Today

2

• From Switches to Logic Gates to Logic Circuits
• Understanding the foundations of

• Computer Systems Organization and Programming
• e.g. Galaxy Note 9

Goals for Today

3

• From Switches to Logic Gates to Logic Circuits
• Understanding the foundations of

• Computer Systems Organization and Programming
• e.g. Galaxy Note 9
• with the big.LITTLE DynamicIQ 8-core ARM processor

Goals for Today

4

• From Switches to Logic Gates to Logic Circuits
• Understanding the foundations of

• Computer Systems Organization and Programming
• e.g. Galaxy Note 9
• with the big.LITTLE DynamicIQ 8-core ARM processor

Goals for Today

5

big Quad Core LITTLE Quad Core

Architecture ARM v8 ARM v8
Process Samsung 10nm Samsung 10nm
Frequency 2.9GHz+ 1.9GHz
Area 3.5mm2
Power-ratio 1 0.17
L1 Cache Size 64 KB I/D Cache 64 KB I/D Cache
L2 Cache Size 2 MB Data Cache 512 KB Data Cache

Goals for Today

6

• From Switches to Logic Gates to Logic Circuits
• Logic Gates

• From switches
• Truth Tables

• Logic Circuits
• From Truth Tables to Circuits (Sum of Products)
• Identity Laws

• Logic Circuit Minimization
• Algebraic Manipulations
• Truth Tables (Karnaugh Maps)

• Transistors (electronic switch)

7

A switch
Acts as a conductor
or insulator.
Can be used to build
amazing things…

The Bombe used to break the German
Enigma machine during World War II

8

A B Light
OFF OFF
A B Light
OFF OFF
OFF ON

A B Light
OFF OFF
OFF ON
ON OFF
ON ON

A B Light

Basic Building Blocks: Switches to Logic Gates

+

-
A

B

A B Light
OFF OFF
OFF ON
ON OFF
ON ON

Truth Table

9

A B Light
OFF OFF
A B Light
OFF OFF
OFF ON

A B Light
OFF OFF
OFF ON
ON OFF

A B Light
OFF OFF
OFF ON
ON OFF
ON ON

A B Light
OFF OFF
A B Light
OFF OFF
OFF ON

A B Light
OFF OFF
OFF ON
ON OFF
ON ON

A B Light

A B Light

Basic Building Blocks: Switches to Logic Gates

+

-

-

A

B

A

B

A B Light
OFF OFF OFF
OFF ON ON
ON OFF ON
ON ON ON

Truth Table

+

• Either (OR)

• Both (AND)

10

A B Light
OFF OFF
A B Light
OFF OFF
OFF ON

A B Light
OFF OFF
OFF ON
ON OFF

A B Light
OFF OFF
A B Light
OFF OFF
OFF ON

A B Light
OFF OFF
OFF ON
ON OFF
ON ON

A B Light

Basic Building Blocks: Switches to Logic Gates

+

-

-

A

B

A

B

A B Light
OFF OFF OFF
OFF ON ON
ON OFF ON
ON ON ON

Truth Table

+ A B Light
OFF OFF OFF
OFF ON OFF
ON OFF OFF
ON ON ON

• Either (OR)

• Both (AND)

11

A B Light
OFF OFF
A B Light
OFF OFF
OFF ON

A B Light
OFF OFF
OFF ON
ON OFF

A B Light
OFF OFF
A B Light
OFF OFF
OFF ON

A B Light
OFF OFF
OFF ON
ON OFF
ON ON

A B Light

Basic Building Blocks: Switches to Logic Gates

-

-

A B Light
OFF OFF OFF
OFF ON ON
ON OFF ON
ON ON ON

Truth Table

A B Light
OFF OFF OFF
OFF ON OFF
ON OFF OFF
ON ON ON

A

B

A

B

OR

AND

• Either (OR)

• Both (AND)

12

A B Light
OFF OFF
A B Light
OFF OFF
OFF ON

A B Light
OFF OFF
OFF ON
ON OFF
ON ON

Basic Building Blocks: Switches to Logic Gates

-

-

Truth TableA

B

A

B

OR

AND

A B Light
0 0 0
0 1 1
1 0 1
1 1 1

0 = OFF
1 = ON

A B Light
0 0 0
0 1 0
1 0 0
1 1 1

13

Basic Building Blocks: Switches to Logic Gates

A

B

A

B

OR

AND
• Did you know?
• George Boole: Inventor of the

idea of logic gates. He was born
in Lincoln, England and he was
the son of a shoemaker in a low
class family.

George Boole (1815-1864)

14

Takeaway
• Binary (two symbols: true and false) is the

basis of Logic Design

15

Building Functions: Logic Gates
• NOT:

• AND:

• OR:

• Logic Gates
 digital circuit that either allows a signal to pass through it or not.
 Used to build logic functions
 There are seven basic logic gates:

AND, OR, NOT,

A B Out

0 0 0

0 1 1

1 0 1

1 1 1

A B Out

0 0 0

0 1 0

1 0 0

1 1 1

A Out

A

B

A

B

A

16

Building Functions: Logic Gates
• NOT:

• AND:

• OR:

• Logic Gates
 digital circuit that either allows a signal to pass through it or not.
 Used to build logic functions
 There are seven basic logic gates:

AND, OR, NOT,
NAND (not AND), NOR (not OR), XOR, and XNOR (not XOR) [later]

A B Out

0 0 0

0 1 1

1 0 1

1 1 1

A B Out

0 0 0

0 1 0

1 0 0

1 1 1

A Out

0 1

1 0

A

B

A

B

A

17

Building Functions: Logic Gates
• NOT:

• AND:

• OR:

• Logic Gates
 digital circuit that either allows a signal to pass through it or not.
 Used to build logic functions
 There are seven basic logic gates:

AND, OR, NOT,
NAND (not AND), NOR (not OR), XOR, and XNOR (not XOR) [later]

A B Out

0 0 0

0 1 1

1 0 1

1 1 1

A B Out

0 0 0

0 1 0

1 0 0

1 1 1

A Out

0 1

1 0

A

B

A

B

A

A B Out

0 0 1

0 1 0

1 0 0

1 1 0

A B Out

0 0 1

0 1 1

1 0 1

1 1 0

A

B

A

B

NAND:

NOR:

18

a b Out

a

b
Out

iClicker Question

(A) NOT
(B) OR
(C) XOR
(D) AND
(E) NAND

Function:
Symbol:

Truth Table:

Which Gate is this?

19

a

b
Out

iClicker Question

(A) NOT
(B) OR
(C) XOR
(D) AND
(E) NAND

Which Gate is this?

a b Out
0 0 0
0 1 1
1 0 1
1 1 0

• XOR: out = 1 if a or b is 1, but not both;
• out = 0 otherwise.
• out = 1, only if a = 1 AND b = 0
• OR a = 0 AND b = 1

20

iClicker Question

(A) NOT
(B) OR
(C) XOR
(D) AND
(E) NAND

Which Gate is this?

a b Out
0 0 0
0 1 1
1 0 1
1 1 0

• XOR: out = 1 if a or b is 1, but not both;
• out = 0 otherwise.
• out = 1, only if a = 1 AND b = 0
• OR a = 0 AND b = 1

a

b
Out

21

Activity#2: Logic Gates
• Fill in the truth table, given the following Logic

Circuit made from Logic AND, OR, and NOT
gates.

• What does the logic circuit do?

a

b

d Out

a b d Out
0 0 0
0 0 1
0 1 0
0 1 1
1 0 0
1 0 1
1 1 0
1 1 1

22

Activity#2: Logic Gates
• Multiplexor: select (d) between two inputs (a

and b) and set one as the output (out)?
• out = a, if d = 0
• out = b, if d = 1

a

b

d Out

a b d Out
0 0 0 0
0 0 1 0
0 1 0 0
0 1 1 1
1 0 0 1
1 0 1 0
1 1 0 1
1 1 1 1

Goals for Today

23

• From Switches to Logic Gates to Logic Circuits
• Logic Gates

• From switches
• Truth Tables

• Logic Circuits
• From Truth Tables to Circuits (Sum of Products)
• Identity Laws

• Logic Circuit Minimization
• Algebraic Manipulations
• Truth Tables (Karnaugh Maps)

• Transistors (electronic switch)

24

Next Goal
• Given a Logic function, create a Logic Circuit

that implements the Logic Function…
• …and, with the minimum number of logic gates

• Fewer gates: A cheaper ($$$) circuit!

25

NOT:

AND:

OR:

XOR:

Logic Gates

A B Out

0 0 0

0 1 1

1 0 1

1 1 1

A B Out

0 0 0

0 1 0

1 0 0

1 1 1

A Out

0 1

1 0

A

B

A

B

A

A B Out

0 0 0

0 1 1

1 0 1

1 1 0

A

B

26

NOT:

AND:

OR:

XOR:

Logic Gates

A B Out

0 0 0

0 1 1

1 0 1

1 1 1

A B Out

0 0 0

0 1 0

1 0 0

1 1 1

A Out

0 1

1 0

A

B

A

B

A

A B Out

0 0 0

0 1 1

1 0 1

1 1 0

A

B

A B Out

0 0 1

0 1 0

1 0 0

1 1 0

A B Out

0 0 1

0 1 1

1 0 1

1 1 0

A

B

A

B

NAND:

NOR:

A B Out

0 0 1

0 1 0

1 0 0

1 1 1

A

B

XNOR:

27

Logic Implementation
• How to implement a desired logic function?

a b c out
0 0 0 0
0 0 1 1
0 1 0 0
0 1 1 1
1 0 0 0
1 0 1 1
1 1 0 0
1 1 1 0

28

Logic Implementation
• How to implement a desired logic function?

a b c out
0 0 0 0
0 0 1 1
0 1 0 0
0 1 1 1
1 0 0 0
1 0 1 1
1 1 0 0
1 1 1 0

1) Write minterms
2) sum of products:
• OR of all minterms where out=1

minterm
a b c
a b c
a b c
a b c
a b c
a b c
a b c
a b c

29

Logic Implementation
• How to implement a desired logic function?

a b c out
0 0 0 0
0 0 1 1
0 1 0 0
0 1 1 1
1 0 0 0
1 0 1 1
1 1 0 0
1 1 1 0

1) Write minterms
2) sum of products:
• OR of all minterms where out=1

• E.g. out = abc + �abc + a�bc

minterm
a b c
a b c
a b c
a b c
a b c
a b c
a b c
a b c

corollary: any combinational circuit can be implemented
in two levels of logic (ignoring inverters)

c
out

b
a

30

Logic Equations
• NOT:

 out = ā = !a = ¬a

• AND:
 out = a ∙ b = a & b = a ∧ b

• OR:
 out = a + b = a | b = a ∨ b

• XOR:
 out = a ⊕ b = a�b + āb

• Logic Equations
 Constants: true = 1, false = 0
 Variables: a, b, out, …
 Operators (above): AND, OR, NOT, etc.

31

Logic Equations
• NOT:

 out = ā = !a = ¬a

• AND:
 out = a ∙ b = a & b = a ∧ b

• OR:
 out = a + b = a | b = a ∨ b

• XOR:
 out = a ⊕ b = a�b + āb

• Logic Equations
 Constants: true = 1, false = 0
 Variables: a, b, out, …
 Operators (above): AND, OR, NOT, etc.

NAND:
• out = a ∙ b = !(a & b) = ¬ (a ∧ b)

NOR:
• out = a + b = !(a | b) = ¬ (a ∨ b)

XNOR:
• out = a ⊕ b = ab + ab

• .

Identities
Identities useful for manipulating logic equations

– For optimization & ease of implementation

a + 0 =
a + 1 =
a + ā =

a ∙ 0 =
a ∙ 1 =
a ∙ ā =

33

Identities
Identities useful for manipulating logic equations

– For optimization & ease of implementation

a + 0 =
a + 1 =
a + ā =

a ∙ 0 =
a ∙ 1 =
a ∙ ā =

a
1
1

0
a
0

a

b

a

b

Identities useful for manipulating logic equations
– For optimization & ease of implementation

(a + b) =

(a � b) =

a + a b =

a(b+c) =

a(b + c) =

Identities

35

Identities useful for manipulating logic equations
– For optimization & ease of implementation

(a + b) =

(a � b) =

a + a b =

a(b+c) =

a(b + c) =

Identities

�a ∙ �b

�a + �b

a

ab + ac

�a + �b∙�c

A

B

A

B↔

A

B

A

B↔

Goals for Today

36

• From Switches to Logic Gates to Logic Circuits
• Logic Gates

• From switches
• Truth Tables

• Logic Circuits
• From Truth Tables to Circuits (Sum of Products)
• Identity Laws

• Logic Circuit Minimization – why?
• Algebraic Manipulations
• Truth Tables (Karnaugh Maps)

• Transistors (electronic switch)

37

(a+b)a + (a+b)c
= aa + ba + ac + bc
= a + a(b+c) + bc
= a + bc

Minimize this logic equation:

(a+b)(a+c) =

a + 0 = a
a + 1 = 1
a + ā = 1
a · 0 = 0
a · 1 = a
a · ā = 0

a + a b = a
a (b+c) = ab + ac

Minimization Example

38

a + 0 = a
a + 1 = 1
a + ā = 1
a · 0 = 0
a · 1 = a
a · ā = 0

a + a b = a
a (b+c) = ab + ac

(a+b)(a+c)  a + bc

How many gates were
required before and after?

iClicker Question

BEFORE AFTER
(A) 2 OR 1 OR
(B) 2 OR, 1 AND 2 OR
(C) 2 OR, 1 AND 1 OR, 1 AND
(D) 2 OR, 2 AND 2 OR
(E) 2 OR, 2 AND 2 OR, 1 AND

39

a + 0 = a
a + 1 = 1
a + ā = 1
a · 0 = 0
a · 1 = a
a · ā = 0

a + a b = a
a (b+c) = ab + ac

(a+b)(a+c)  a + bc

How many gates were
required before and after?

iClicker Question

BEFORE AFTER
(A) 2 OR 1 OR
(B) 2 OR, 1 AND 2 OR
(C) 2 OR, 1 AND 1 OR, 1 AND
(D) 2 OR, 2 AND 2 OR
(E) 2 OR, 2 AND 2 OR, 1 AND

40

Checking Equality w/Truth Tables
circuits ↔ truth tables ↔ equations

Example: (a+b)(a+c) = a + bc
a b c

0 0 0
0 0 1
0 1 0
0 1 1
1 0 0
1 0 1
1 1 0
1 1 1

Checking Equality w/Truth Tables
circuits ↔ truth tables ↔ equations

Example: (a+b)(a+c) = a + bc
a b c

0 0 0

0 0 1

0 1 0

0 1 1

1 0 0

1 0 1

1 1 0

1 1 1

42

Checking Equality w/Truth Tables
circuits ↔ truth tables ↔ equations

Example: (a+b)(a+c) = a + bc
bc RHS

0 0
0 0
0 0
1 1
0 1
0 1
0 1
1 1

a b c

0 0 0

0 0 1

0 1 0

0 1 1

1 0 0

1 0 1

1 1 0

1 1 1

a+b a+c LHS

0 0 0
0 1 0
1 0 0
1 1 1
1 1 1
1 1 1
1 1 1
1 1 1

43

Takeaway
• Binary (two symbols: true and false) is the basis

of Logic Design

• More than one Logic Circuit can implement
same Logic function. Use Algebra (Identities) or
Truth Tables to show equivalence.

Goals for Today

44

• From Switches to Logic Gates to Logic Circuits
• Logic Gates

• From switches
• Truth Tables

• Logic Circuits
• From Truth Tables to Circuits (Sum of Products)
• Identity Laws

• Logic Circuit Minimization
• Algebraic Manipulations
• Truth Tables (Karnaugh Maps)

• Transistors (electronic switch)

45

Karnaugh Maps
How does one find the most efficient equation?
– Manipulate algebraically until…?
– Use Karnaugh Maps (optimize visually)
– Use a software optimizer

For large circuits
– Decomposition & reuse of building blocks

46

a b c out
0 0 0 0
0 0 1 1
0 1 0 0
0 1 1 1
1 0 0 1
1 0 1 1
1 1 0 0
1 1 1 0

Sum of minterms yields
 out = abc + �abc + abc + a�bc

Minimization with Karnaugh maps (1)

47

a b c out
0 0 0 0
0 0 1 1
0 1 0 0
0 1 1 1
1 0 0 1
1 0 1 1
1 1 0 0
1 1 1 0

Sum of minterms yields
 out = abc + �abc + abc + a�bc

Karnaugh maps identify
which inputs are (ir)relevant
to the output

0 0 0 1
1 1 0 1

00 01 11 10

0

1

c ab

Minimization with Karnaugh maps (2)

48

a b c out
0 0 0 0
0 0 1 1
0 1 0 0
0 1 1 1
1 0 0 1
1 0 1 1
1 1 0 0
1 1 1 0

Sum of minterms yields
 out = abc + �abc + abc + a�bc

Karnaugh map minimization
 Cover all 1’s
 Group adjacent blocks of 2n

1’s that yield a rectangular
shape

 Encode the common features
of the rectangle
 out = a�b + �ac

0 0 0 1
1 1 0 1

00 01 11 10

0

1

c ab

Minimization with Karnaugh maps (2)

49

Karnaugh Minimization Tricks (1)

Minterms can overlap
 out = b�c + a�c + ab

Minterms can span 2, 4, 8
or more cells
 out = �c + ab

0 1 1 1

0 0 1 0

00 01 11 10

0

1

c ab

1 1 1 1

0 0 1 0

00 01 11 10

0

1

c
ab

50

Karnaugh Minimization Tricks (2)

• The map wraps around
 out = �bd

 out = �b �d1 0 0 1
0 0 0 0
0 0 0 0
1 0 0 1

00 01 11 10

00

01

ab

cd

11

10

0 0 0 0
1 0 0 1
1 0 0 1
0 0 0 0

00 01 11 10

00

01

ab

cd

11

10

51

• “Don’t care” values can be
interpreted individually in
whatever way is convenient
 assume all x’s = 1
 out = d

 assume middle x’s = 0
 assume 4th column x = 1
 out = �b �d

Karnaugh Minimization Tricks (3)

1 0 0 x
0 x x 0
0 x x 0
1 0 0 1

00 01 11 10

00

01

ab

cd

11

10

0 0 0 0
1 x x x
1 x x 1
0 0 0 0

00 01 11 10

00

01

ab

cd

11

10

52

0 0 0 1

1 1 0 1

Minimization with K-Maps

(1) Circle the 1’s (see below)
(2) Each circle is a logical
component of the final equation

= a�b + �ac

00 01 11 10
0

1

c
ab

Rules:
• Use fewest circles necessary to cover all 1’s
• Circles must cover only 1’s
• Circles span rectangles of size power of 2 (1, 2, 4, 8…)
• Circles should be as large as possible (all circles of 1?)
• Circles may wrap around edges of K-Map
• 1 may be circled multiple times if that means fewer

circles

53

Multiplexer
• A multiplexer selects

between multiple inputs
 out = a, if d = 0
 out = b, if d = 1

• Build truth table
• Minimize diagram
• Derive logic diagram

a

b

d

a b d out
0 0 0
0 0 1
0 1 0
0 1 1
1 0 0
1 0 1
1 1 0
1 1 1

54

Multiplexer Implementation

a b d out
0 0 0 0
0 0 1 0
0 1 0 0
0 1 1 1
1 0 0 1
1 0 1 0
1 1 0 1
1 1 1 1

• Build a truth table
out = �abd + abd + ab�d + abd

a

b

d

55

Multiplexer Implementation

a b d out
0 0 0 0
0 0 1 0
0 1 0 0
0 1 1 1
1 0 0 1
1 0 1 0
1 1 0 1
1 1 1 1

a

b

d

• Build the Karnaugh map

00 01 11 10

0

1

d ab

56

Multiplexer Implementation

a b d out
0 0 0 0
0 0 1 0
0 1 0 0
0 1 1 1
1 0 0 1
1 0 1 0
1 1 0 1
1 1 1 1

a

b

d

• Build the Karnaugh map

0 0 1 1

0 1 1 0

00 01 11 10

0

1

d ab

57

Multiplexer Implementation

a b d out
0 0 0 0
0 0 1 0
0 1 0 0
0 1 1 1
1 0 0 1
1 0 1 0
1 1 0 1
1 1 1 1

a

b

d

• Derive Minimal Logic
Equation

• out = a�d + bd

0 0 1 1

0 1 1 0

00 01 11 10

0

1

d ab

d

b

a

58

Takeaway
• Binary (two symbols: true and false) is the basis

of Logic Design

• More than one Logic Circuit can implement
same Logic function. Use Algebra (Identities) or
Truth Tables to show equivalence.

• Any logic function can be implemented as “sum
of products”. Karnaugh Maps minimize number
of gates.

• Dates to keep in Mind
• Prelims: Tue Mar 5th and Thur May 2nd

• Proj 1: Due Fri Feb 15th

• Proj 2: Due Fri Mar 11th

• Proj 3: Due Thur Mar 28th before Spring break
• Final Project: Due Tue May 16th

Administrivia

59

• Attempt to balance the iClicker graph

• Register iClicker
• http://atcsupport.cit.cornell.edu/pollsrvc/

iClicker

60

Goals for Today

61

• From Switches to Logic Gates to Logic Circuits
• Logic Gates

• From switches
• Truth Tables

• Logic Circuits
• From Truth Tables to Circuits (Sum of Products)
• Identity Laws

• Logic Circuit Minimization
• Algebraic Manipulations
• Truth Tables (Karnaugh Maps)

• Transistors (electronic switch)

62

Silicon Valley & the Semiconductor Industry

• Transistors:
• Youtube video “How does a transistor work”

https://www.youtube.com/watch?v=IcrBqCFLHIY
• Break: show some Transistor, Fab, Wafer photos

https://www.youtube.com/watch?v=IcrBqCFLHIY

63

Transistors 101

N-Type Silicon: negative free-carriers (electrons)
P-Type Silicon: positive free-carriers (holes)
P-Transistor: negative charge on gate generates electric field

that creates a (+ charged) p-channel connecting source &
drain

N-Transistor: works the opposite way
Metal-Oxide Semiconductor (Gate-Insulator-Silicon)
• Complementary MOS = CMOS technology uses both p- & n-

type transistors

N-type

Off

Insulator

P-type P-type

Gate DrainSource

++++++
+++

++

----- ------ --

- --

-

-
-

-

-
-

- -
-

--

+++
N-type

On

Insulator

P-type P-type

Gate DrainSource

++++++++

----- ------ --

- --

-

-
-

-

-
-

- -
-

--

+ +P-type channel created+ ++ ++

—

P-TransistorP-Transistor

64

CMOS Notation
N-type

P-type

Gate input controls whether current can flow between
the other two terminals or not.

Hint: the “o” bubble of the p-type tells you that this gate
wants a 0 to be turned on

gate

Off/Open

0

On/Closed

1

Off/Open

1

On/Closed

0
gate

65

Which of the following statements is false?

(A) P- and N-type transistors are both used in
CMOS designs.

(B) As transistors get smaller, the frequency of
your processor will keep getting faster.

(C) As transistors get smaller, you can fit more
and more of them on a single chip.

(D) Pure silicon is a semi conductor.
(E) Experts believe that Moore’s Law will soon

end.

iClicker Question

66

2-Transistor Combination: NOT
• Logic gates are constructed by combining

transistors in complementary arrangements
• Combine p&n transistors to make a NOT gate:

p-gate
closes

n-gate
stays open

p-gate
stays open

n-gate
closes

CMOS Inverter :

ground (0)

power source (1)

input output

p-gate

n-gate

power source (1)

ground (0) ground (0)

power source (1)

1 00

—

—

+

+

1

67

Inverter

In Out
0 1
1 0

Function: NOT
Symbol:

Truth Table:

in out
in out

Vsupply (aka logic 1)

(ground is logic 0)

68

NOR Gate

A B out
0 0 1
0 1 0
1 0 0
1 1 0

Function: NOR
Symbol:

Truth Table:

b
a out

A

out

Vsupply

B

BA

69

Which Gate is this?

A B out
0 0
0 1
1 0
1 1

Function:
Symbol:

Truth Table:

A

out

Vsupply

B

BA

Vsupply

iClicker Question

(A) NOT
(B) OR
(C) XOR
(D) AND
(E) NAND

70

Which Gate is this?

A B out
0 0 1
0 1 1
1 0 1
1 1 0

Function:
Symbol:

Truth Table:

A

out

Vsupply

B

BA

Vsupply

iClicker Question

(A) NOT
(B) OR
(C) XOR
(D) AND
(E) NAND

71

Building Functions (Revisited)
• NOT:

• AND:

• OR:

• NAND and NOR are universal
 Can implement any function with NAND or just NOR gates
 useful for manufacturing

72

Building Functions (Revisited)
• NOT:

• AND:

• OR:

• NAND and NOR are universal
 Can implement any function with NAND or just NOR gates
 useful for manufacturing

b

a

b

a

a

73

Logic Gates
• One can buy gates

separately
• ex. 74xxx series of

integrated circuits
• cost ~$1 per chip, mostly

for packaging and testing

• Cumbersome, but
possible to build devices
using gates put together
manually

74

Then and Now

• Intel Haswell
• 1.4 billion transistors, 22nm
• 177 square millimeters
• Four processing cores

http://techguru3d.com/4th-gen-intel-haswell-processors-architecture-and-lineup/

• The first transistor
• One workbench at AT&T Bell Labs
• 1947
• Bardeen, Brattain, and Shockley

https://en.wikipedia.org/wiki/Transistor_count

75

Then and Now

• Intel Broadwell
• 7.2 billion transistors, 14nm
• 456 square millimeters
• Up to 22 processing cores

https://www.computershopper.com/computex-2015/performance-preview-desktop-broadwell-at-computex-20

• The first transistor
• One workbench at AT&T Bell Labs
• 1947
• Bardeen, Brattain, and Shockley

https://en.wikipedia.org/wiki/Transistor_count

76

Big Picture: Abstraction
• Hide complexity through simple abstractions
 Simplicity

• Box diagram represents inputs and outputs
 Complexity

• Hides underlying NMOS- and PMOS-transistors and
atomic interactions

in out

Vdd

Vss

in out out
a
d

b

a

b

d out

77

Summary
• Most modern devices made of billions of transistors

• You will build a processor in this course!
• Modern transistors made from semiconductor materials
• Transistors used to make logic gates and logic circuits

• We can now implement any logic circuit
• Use P- & N-transistors to implement NAND/NOR gates
• Use NAND or NOR gates to implement the logic circuit
• Efficiently: use K-maps to find required minimal terms

	Gates and Logic:�From Transistors to Logic Gates and Logic Circuits
	Goals for Today
	Goals for Today
	Goals for Today
	Goals for Today
	Goals for Today
	A switch
	Basic Building Blocks: Switches to Logic Gates
	Basic Building Blocks: Switches to Logic Gates
	Basic Building Blocks: Switches to Logic Gates
	Basic Building Blocks: Switches to Logic Gates
	Basic Building Blocks: Switches to Logic Gates
	Basic Building Blocks: Switches to Logic Gates
	Takeaway
	Slide Number 15
	Slide Number 16
	Slide Number 17
	Slide Number 18
	Slide Number 19
	Slide Number 20
	Slide Number 21
	Slide Number 22
	Goals for Today
	Next Goal
	Slide Number 25
	Slide Number 26
	Slide Number 27
	Slide Number 28
	Slide Number 29
	Slide Number 30
	Slide Number 31
	Slide Number 32
	Slide Number 33
	Slide Number 34
	Slide Number 35
	Goals for Today
	Slide Number 37
	Slide Number 38
	Slide Number 39
	Slide Number 40
	Slide Number 41
	Slide Number 42
	Takeaway
	Goals for Today
	Slide Number 45
	Slide Number 46
	Slide Number 47
	Slide Number 48
	Slide Number 49
	Slide Number 50
	Slide Number 51
	Slide Number 52
	Slide Number 53
	Slide Number 54
	Slide Number 55
	Slide Number 56
	Slide Number 57
	Takeaway
	Administrivia
	iClicker
	Goals for Today
	Silicon Valley & the Semiconductor Industry
	Slide Number 63
	Slide Number 64
	Slide Number 65
	Slide Number 66
	Slide Number 67
	Slide Number 68
	Slide Number 69
	Slide Number 70
	Slide Number 71
	Slide Number 72
	Logic Gates
	Slide Number 74
	Slide Number 75
	Slide Number 76
	Summary

