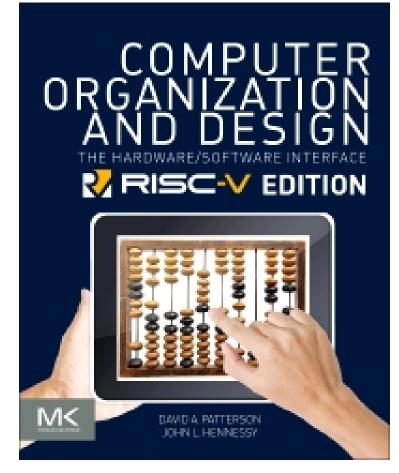
Gates and Logic: From Transistors to Logic Gates and Logic Circuits **Prof. Hakim Weatherspoon CS 3410 Computer Science Cornell University**

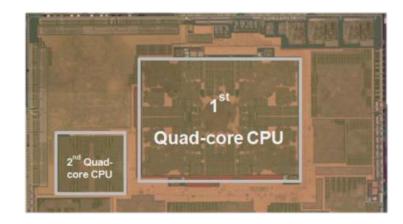
[Weatherspoon, Bala, Bracy, and Sirer]

- From Switches to Logic Gates to Logic Circuits
- Understanding the foundations of
 - Computer Systems Organization and Programming



- From Switches to Logic Gates to Logic Circuits
- Understanding the foundations of
 - Computer Systems Organization and Programming
 - e.g. Galaxy Note 9

- From Switches to Logic Gates to Logic Circuits
- Understanding the foundations of
 - Computer Systems Organization and Programming
 - e.g. Galaxy Note 9
 - with the big.LITTLE DynamicIQ 8-core ARM processor



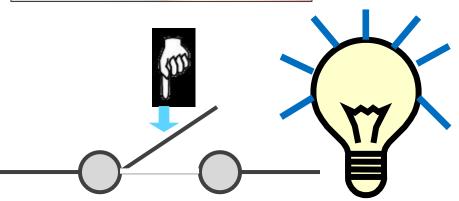
- From Switches to Logic Gates to Logic Circuits
- Understanding the foundations of
 - Computer Systems Organization and Programming
 - e.g. Galaxy Note 9
 - with the big.LITTLE DynamicIQ 8-core ARM processor

	big Quad Core	LITTLE Quad Core
Architecture	ARM v8	ARM v8
Process	Samsung 10nm	Samsung 10nm
Frequency	2.9GHz+	1.9GHz
Area	3.5mm2	
Power-ratio	1	0.17
L1 Cache Size	64 KB I/D Cache	64 KB I/D Cache
L2 Cache Size	2 MB Data Cache	512 KB Data Cache

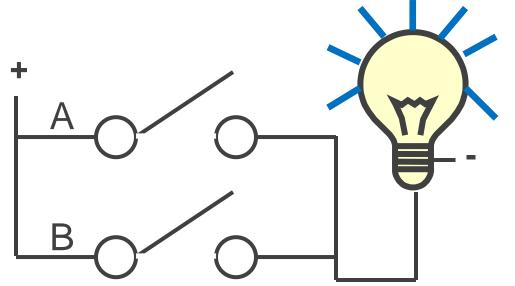
- From Switches to Logic Gates to Logic Circuits
- Logic Gates
 - From switches
 - Truth Tables
- Logic Circuits
 - From Truth Tables to Circuits (Sum of Products)
 - Identity Laws
- Logic Circuit Minimization
 - Algebraic Manipulations
 - Truth Tables (Karnaugh Maps)
- Transistors (electronic switch)

A switch

Acts as a *conductor* or *insulator*. Can be used to build amazing things...

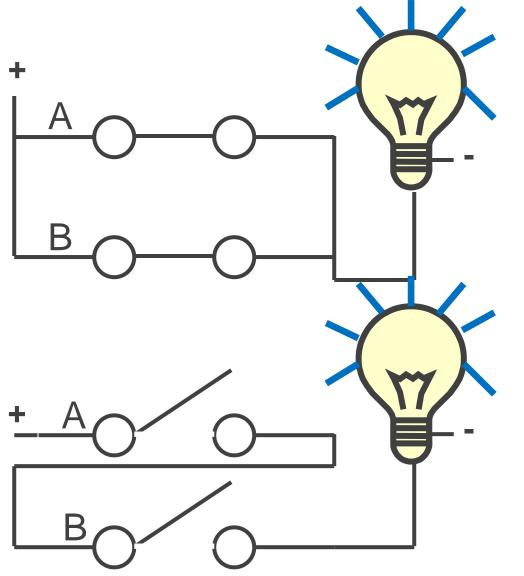


The Bombe used to break the German Enigma machine during World War II



Truth Table

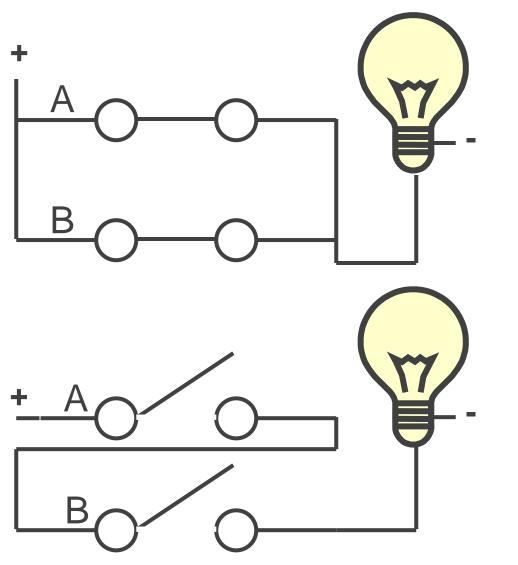
А	В	Light
OFF	OFF	
OFF	ON	
ON	OFF	
ON	ON	



Truth Table

А	В	Light
OFF	OFF	OFF
OFF	ON	ON
ON	OFF	ON
ON	ON	ON

А	В	Light
OFF	OFF	
OFF	ON	
ON	OFF	
ON	ON	



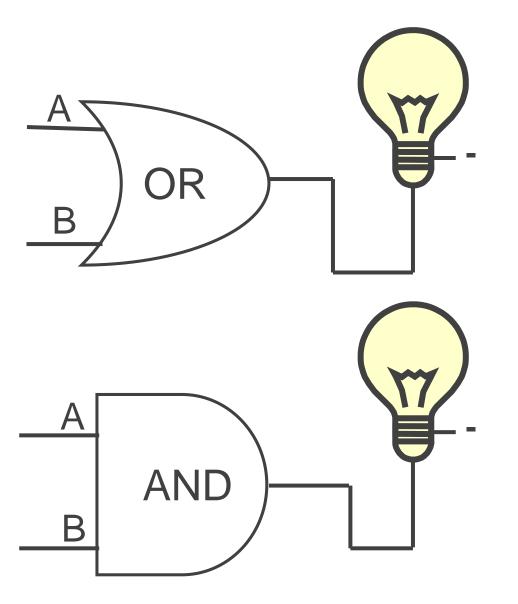
• Either (OR)

Truth Table

А	В	Light
OFF	OFF	OFF
OFF	ON	ON
ON	OFF	ON
ON	ON	ON

• Both (AND)

А	В	Light
OFF	OFF	OFF
OFF	ON	OFF
ON	OFF	OFF
ON	ON	ON



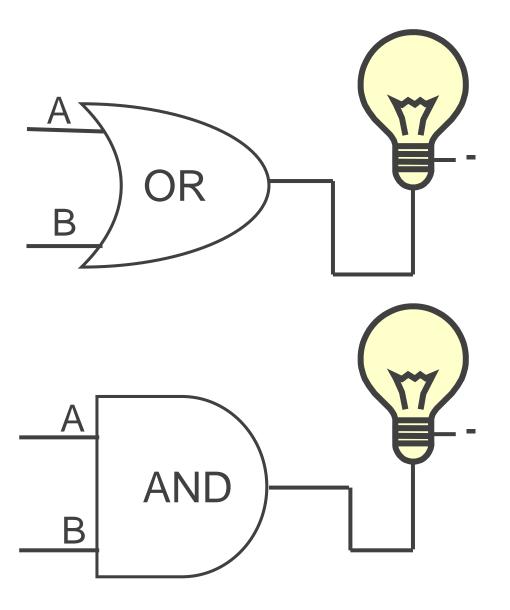
• Either (OR)

Truth Table

А	В	Light
OFF	OFF	OFF
OFF	ON	ON
ON	OFF	ON
ON	ON	ON

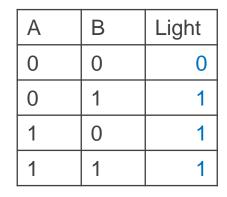
• Both (AND)

А	В	Light
OFF	OFF	OFF
OFF	ON	OFF
ON	OFF	OFF
ON	ON	ON



• Either (OR)

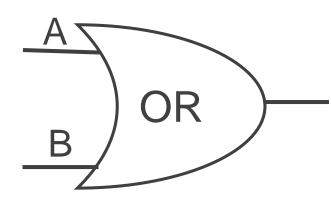
Truth Table



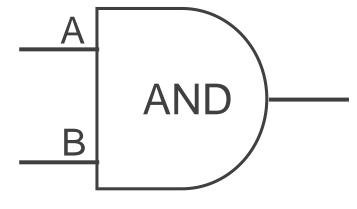
0 = OFF1 = ON

• Both (AND)

Α	В	Light
0	0	0
0	1	0
1	0	0
1	1	1



George Boole (1815-1864)

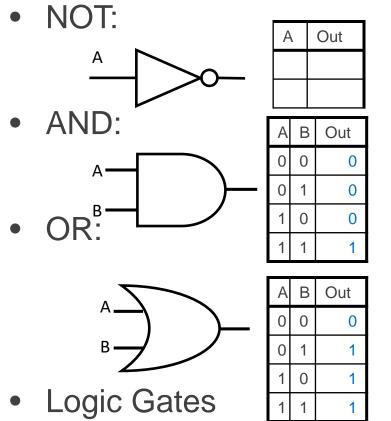


- Did you know?
- George Boole: Inventor of the idea of logic gates. He was born in Lincoln, England and he was the son of a shoemaker in a low class family.

Takeaway

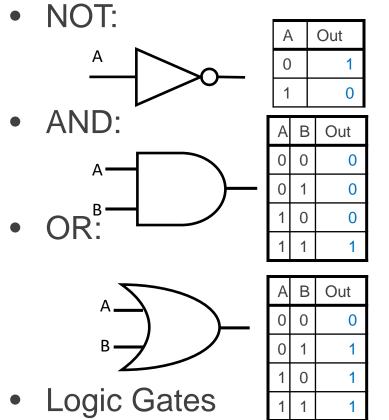
 Binary (two symbols: true and false) is the basis of Logic Design

Building Functions: Logic Gates



- digital circuit that either allows a signal to pass through it or not.
- Used to build logic functions
- There are seven basic logic gates: AND, OR, NOT,

Building Functions: Logic Gates

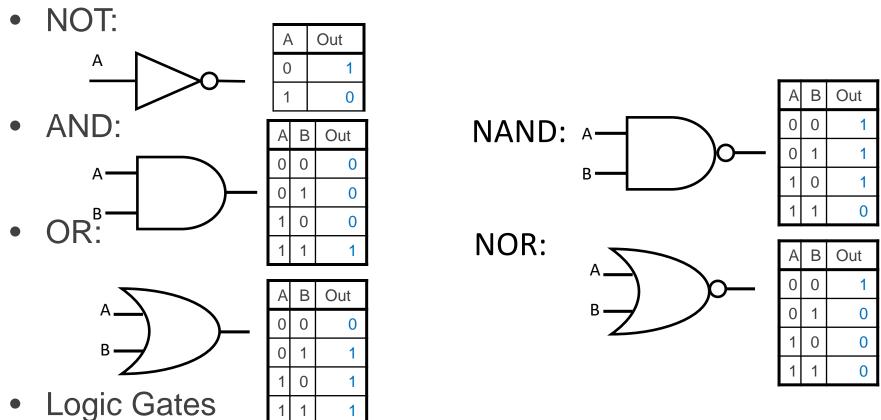


- digital circuit that either allows a signal to pass through it or not.
- Used to build logic functions
- There are seven basic logic gates:

AND, OR, **NOT**,

NAND (not AND), NOR (not OR), XOR, and XNOR (not XOR) [later]

Building Functions: Logic Gates



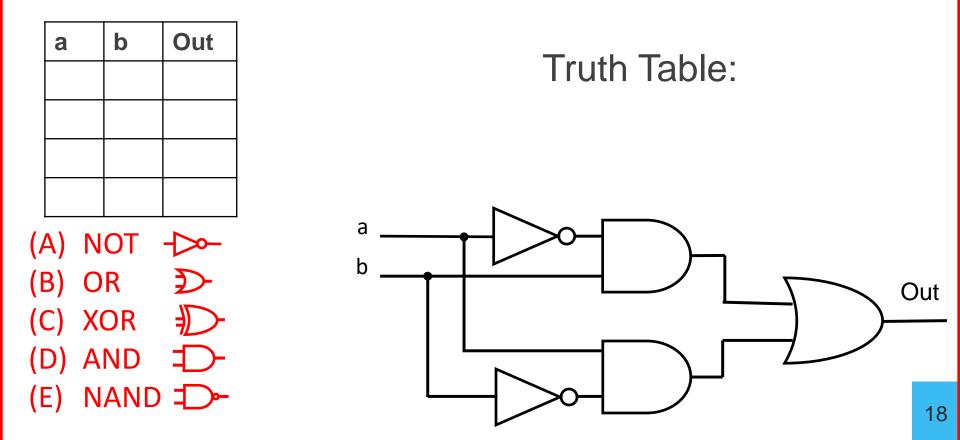
- digital circuit that either allows a signal to pass through it or not.
- Used to build logic functions
- There are seven basic logic gates:

AND, OR, **NOT**,

NAND (not AND), NOR (not OR), XOR, and XNOR (not XOR) [later]

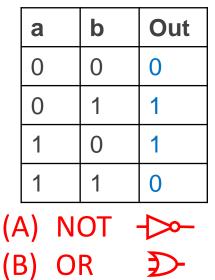
Which Gate is this? iClicker Question

Function: Symbol:



Which Gate is this? iClicker Question

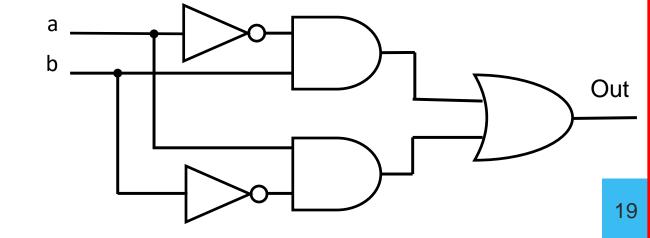
- XOR: out = 1 if a or b is 1, but not both;
 - out = 0 otherwise.
 - out = 1, only if $\mathbf{a} = 1$ AND $\mathbf{b} = 0$ OR $\mathbf{a} = 0$ AND $\mathbf{b} = 1$



XOR

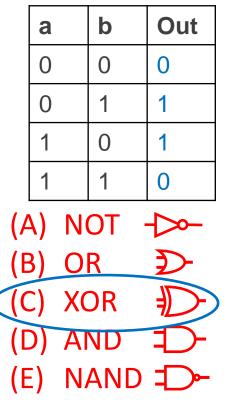
AND

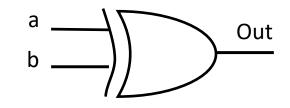
NAND 1



Which Gate is this? iClicker Question

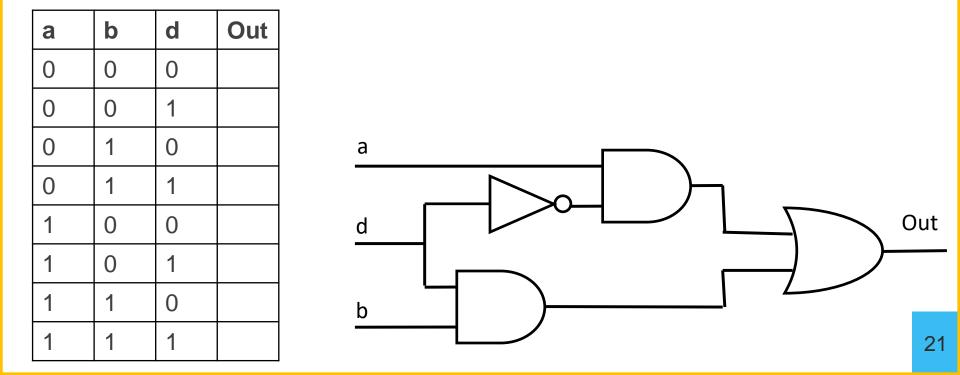
- XOR: out = 1 if a or b is 1, but not both;
 - out = 0 otherwise.
 - out = 1, only if $\mathbf{a} = 1$ AND $\mathbf{b} = 0$ OR $\mathbf{a} = 0$ AND $\mathbf{b} = 1$





Activity#2: Logic Gates

- Fill in the truth table, given the following Logic Circuit made from Logic AND, OR, and NOT gates.
- What does the logic circuit do?

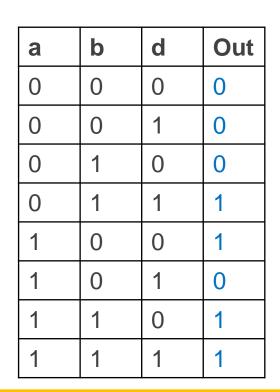


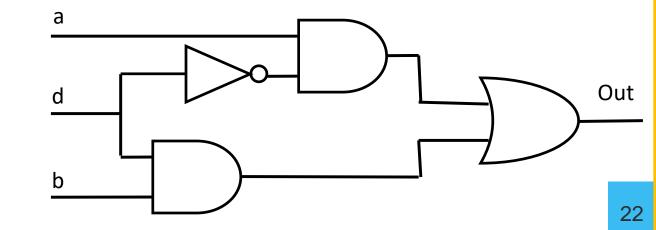
Activity#2: Logic Gates

Multiplexor: select (d) between two inputs (a and b) and set one as the output (out)?

out = a, if
$$d = 0$$

out = b, if $d = 1$



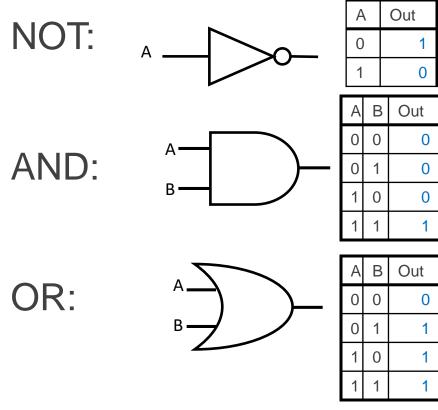


- From Switches to Logic Gates to Logic Circuits
- Logic Gates
 - From switches
 - Truth Tables
- Logic Circuits
 - From Truth Tables to Circuits (Sum of Products)
 - Identity Laws
- Logic Circuit Minimization
 - Algebraic Manipulations
 - Truth Tables (Karnaugh Maps)
- Transistors (electronic switch)

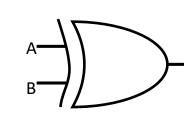
Next Goal

- Given a Logic function, create a Logic Circuit that implements the Logic Function...
- ...and, with the minimum number of logic gates
- Fewer gates: A cheaper (\$\$\$) circuit!

Logic Gates

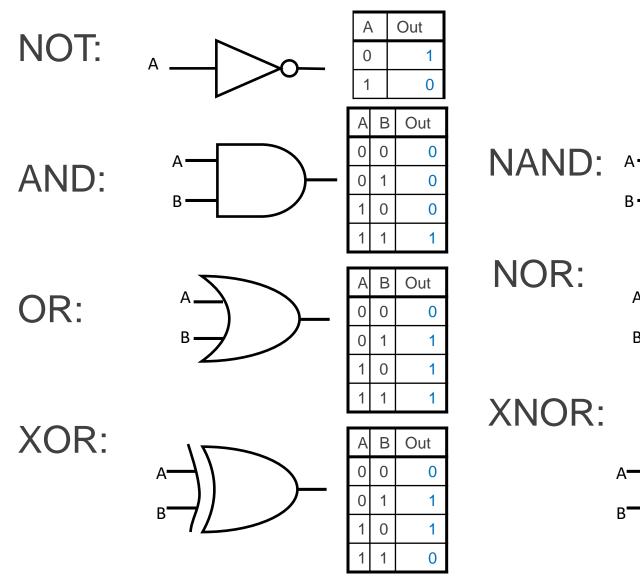


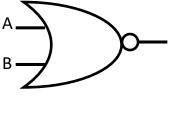
XOR:

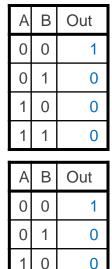


А	В	Out
0	0	0
0	1	1
1	0	1
1	1	0

Logic Gates

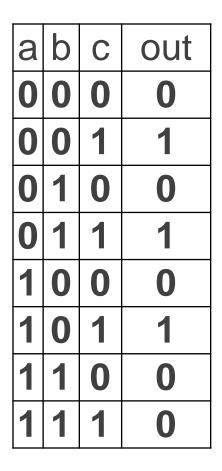






Logic Implementation

• How to implement a desired logic function?



Logic Implementation

• How to implement a desired logic function?

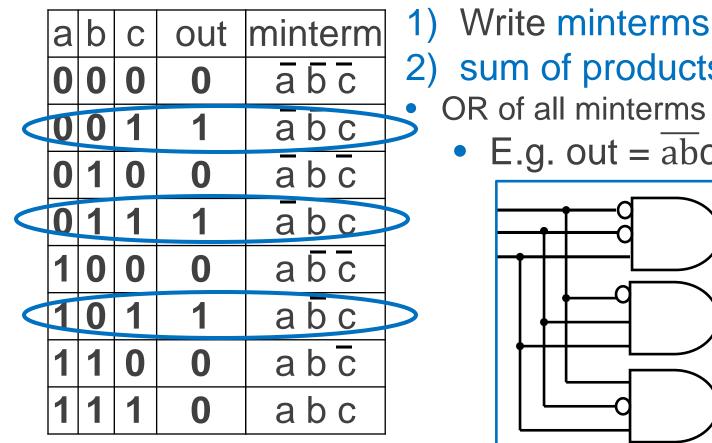
а	b	С	out	minterm
0	0	0	0	ābc
0	0	1	1	abc
0	1	0	0	abc
0	1	1	1	abc
1	0	0	0	a <u>b c</u>
1	0	1	1	abc
1	1	0	0	a b c
1	1	1	0	abc

Write minterms
 sum of products:

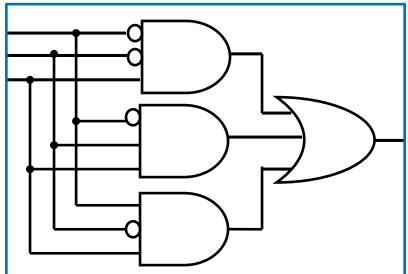
OR of all minterms where out=1

Logic Implementation

• How to implement a desired logic function?



- 2) sum of products: OR of all minterms where out=1
 - E.g. out = \overline{abc} + \overline{abc} + abc



corollary: any combinational circuit can be implemented in two levels of logic (ignoring inverters)

Logic Equations

- NOT:
 - out = ā = !a = ¬a
- AND:

out = a ⋅ b = a & b = a ∧ b

- OR:
 out = a + b = a | b = a ∨ b
- XOR:
 out = a ⊕ b = ab̄ + āb
- Logic Equations
 - Constants: true = 1, false = 0
 - Variables: a, b, out, ...
 - Operators (above): AND, OR, NOT, etc.

Logic Equations NOT: out = ā !a NAND: • out = $\overline{a \cdot b}$ = !(a & b) = \neg (a \land b) AND: • out = $a \cdot b = a \& b = a \land b$ NOR: OR: • out = $\overline{a + b}$ = !(a | b) = \neg (a \lor b) • out $= a + b = a | b = a \lor b$ **XNOR:** • out = $\overline{a \oplus b}$ = $ab + \overline{ab}$ XOR: • out = $a \oplus b$ = $a\overline{b} + \overline{a}b$ Logic Equations Constants: true = 1, false = 0 Variables: a, b, out, … Operators (above): AND, OR, NOT, etc.

Identities useful for manipulating logic equations

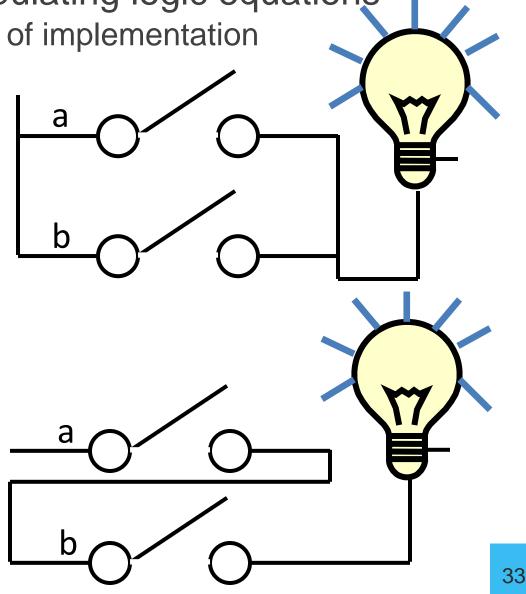
- For optimization & ease of implementation
- a + 0 =
- a + 1 =
- a + ā =

- $a \cdot 0 =$
- a · 1 =
- a·ā =

Identities useful for manipulating logic equations

- For optimization & ease of implementation
- a + 0 = aa + 1 = 1 $a + \bar{a} = 1$

 $a \cdot 0 = 0$ $a \cdot 1 = a$ $a \cdot \bar{a} = 0$



Identities useful for manipulating logic equations

- For optimization & ease of implementation

$$\overline{(a + b)} =$$

$$\overline{(a \cdot b)} =$$

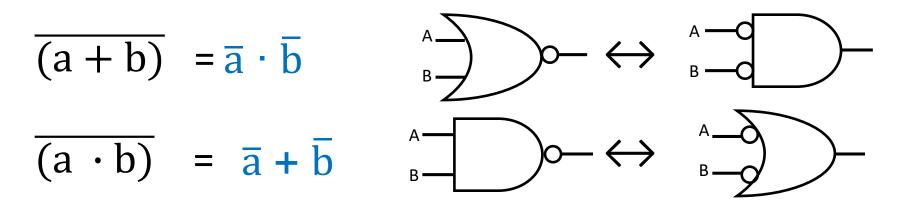
$$a + a b =$$

$$a(b+c) =$$

$$\overline{a(b+c)} =$$

Identities useful for manipulating logic equations

For optimization & ease of implementation



a + a b = a

a(b+c) = ab + ac

- From Switches to Logic Gates to Logic Circuits
- Logic Gates
 - From switches
 - Truth Tables
- Logic Circuits
 - From Truth Tables to Circuits (Sum of Products)
 - Identity Laws

Logic Circuit Minimization – why?

- Algebraic Manipulations
- Truth Tables (Karnaugh Maps)
- Transistors (electronic switch)

Minimization Example

a + 0 = aa + 1 = 1 $a + \bar{a} = 1$ $a \cdot 0 = 0$ $a \cdot 1 = a$ $a \cdot \bar{a} = 0$ a + ab = aa (b+c) = ab + ac $(a+b) = \overline{a} \bullet b$ $(ab) = \overline{a} + \overline{b}$ $\overline{a(b+c)} = \overline{a} + \overline{b} \bullet \overline{c}$

Minimize this logic equation:

(a+b)(a+c) = (a+b)a + (a+b)c= aa + ba + ac + bc= a + a(b+c) + bc= a + bc

a + 0 = a
a + 1 = 1
a + ā = 1
$a \cdot 0 = 0$
a · 1 = a
$a \cdot \bar{a} = 0$
a + a b = a a (b+c) = ab + ac $\overline{(a+b)} = \overline{a} \bullet \overline{b}$ $\overline{(ab)} = \overline{a} + \overline{b}$
$\overline{a(b+c)} = \overline{a} + \overline{b} \bullet \overline{c}$

$(a+b)(a+c) \rightarrow a + bc$

How many gates were required before and after?

 BEFORE
 AFTER

 (A) 2 OR
 1 OR

 (B) 2 OR, 1 AND
 2 OR

 (C) 2 OR, 1 AND
 1 OR, 1 AND

 (D) 2 OR, 2 AND
 2 OR

 (E) 2 OR, 2 AND
 2 OR, 1 AND

$$a + 0 = a$$

$$a + 1 = 1$$

$$a + \overline{a} = 1$$

$$a \cdot 0 = 0$$

$$a \cdot 1 = a$$

$$a \cdot \overline{a} = 0$$

$$a + a b = a$$

$$a \cdot \overline{a} = 0$$

$$a + a b = a$$

$$a (b+c) = ab + ac$$

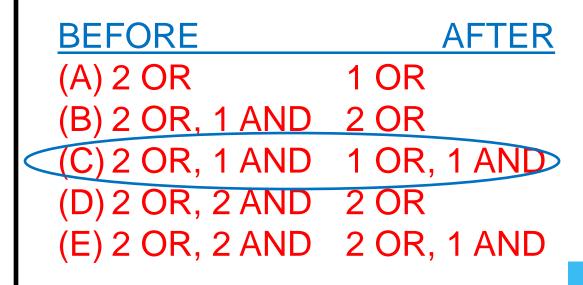
$$\overline{(a+b)} = \overline{a} \bullet \overline{b}$$

$$\overline{(ab)} = \overline{a} + \overline{b}$$

$$\overline{a(b+c)} = \overline{a} + \overline{b} \bullet \overline{c}$$

iClicker Question (a+b)(a+c) \rightarrow a + bc

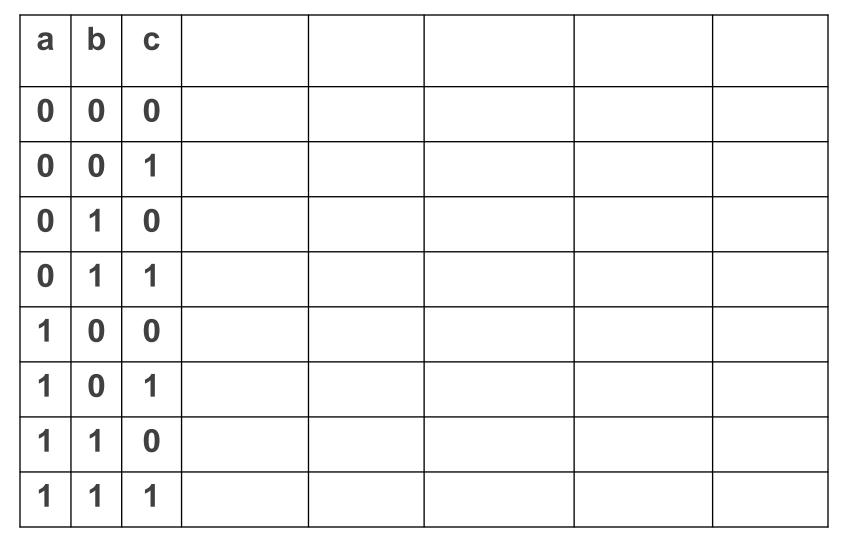
How many gates were required before and after?



Checking Equality w/Truth Tables

circuits \leftrightarrow truth tables \leftrightarrow equations

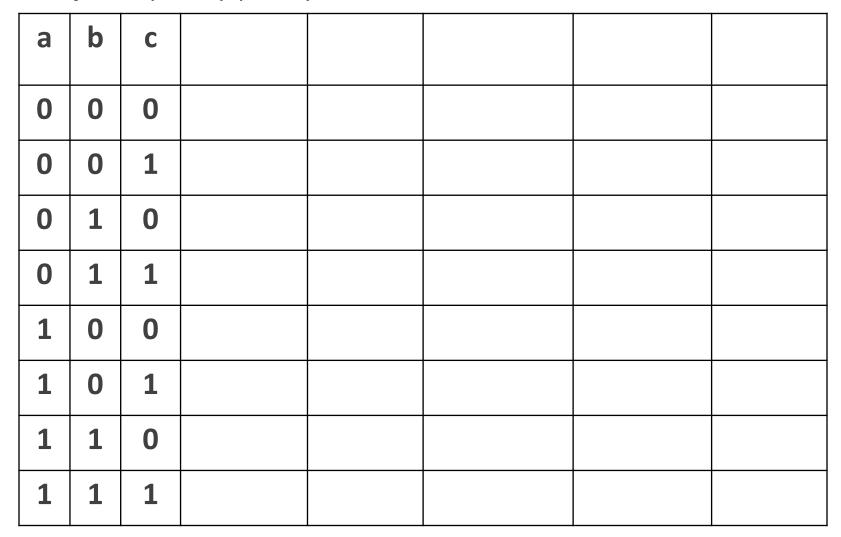
Example: (a+b)(a+c) = a + bc



Checking Equality w/Truth Tables

circuits \leftrightarrow truth tables \leftrightarrow equations

Example: (a+b)(a+c) = a + bc



Checking Equality w/Truth Tables

circuits \leftrightarrow truth tables \leftrightarrow equations

Example: (a+b)(a+c) = a + bc

	_	-		-			
а	b	С	a+b	a+c	LHS	bc	RHS
0	0	0	0	0	0	0	0
0	0	1	0	1	0	0	0
0	1	0	1	0	0	0	0
0	1	1	1	1	1	1	1
1	0	0	1	1	1	0	1
1	0	1	1	1	1	0	1
1	1	0	1	1	1	0	1
1	1	1	1	1		1	1

Takeaway

- Binary (two symbols: true and false) is the basis of Logic Design
- More than one Logic Circuit can implement same Logic function. Use Algebra (Identities) or Truth Tables to show equivalence.

Goals for Today

- From Switches to Logic Gates to Logic Circuits
- Logic Gates
 - From switches
 - Truth Tables
- Logic Circuits
 - From Truth Tables to Circuits (Sum of Products)
 - Identity Laws
- Logic Circuit Minimization
 - Algebraic Manipulations
 - Truth Tables (Karnaugh Maps)
- Transistors (electronic switch)

Karnaugh Maps

How does one find the most efficient equation?

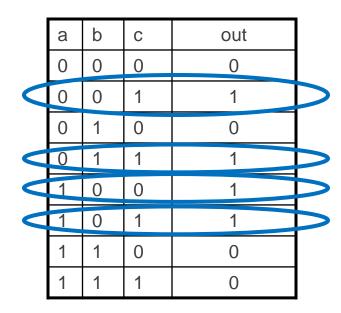
- -Manipulate algebraically until...?
- -Use Karnaugh Maps (optimize visually)
- -Use a software optimizer
- For large circuits
- -Decomposition & reuse of building blocks

Minimization with Karnaugh maps (1)

Sum of minterms yields

-

out =



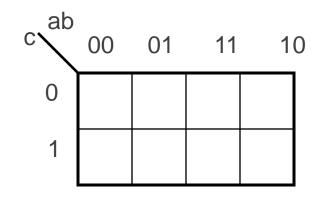
Minimization with Karnaugh maps (2)

а	b	С	out
0	0	0	0
0	0	1	1
0	1	0	0
0	1	1	1
1	0	0	1
1	0	1	1
1	1	0	0
1	1	1	0

Sum of minterms yields

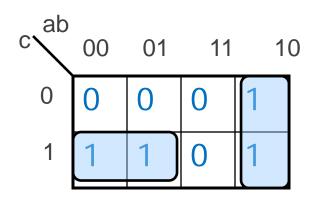
• $out = \overline{abc} + \overline{abc} + \overline{abc} + \overline{abc}$

 Karnaugh maps identify which inputs are (ir)relevant to the output



Minimization with Karnaugh maps (2)

а	b	С	out
0	0	0	0
0	0	1	1
0	1	0	0
0	1	1	1
1	0	0	1
1	0	1	1
1	1	0	0
1	1	1	0



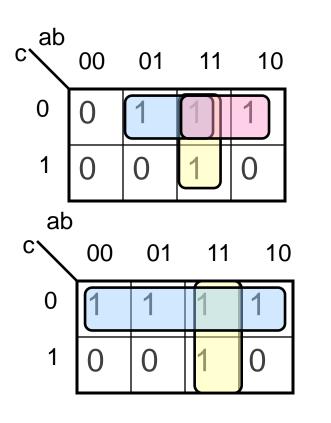
Sum of minterms yields • out = $\overline{abc} + \overline{abc} + \overline{abc} + \overline{abc}$

Karnaugh map minimization

- Cover all 1's
- Group adjacent blocks of 2ⁿ
 1's that yield a rectangular shape
- Encode the common features of the rectangle

• out =

Karnaugh Minimization Tricks (1)

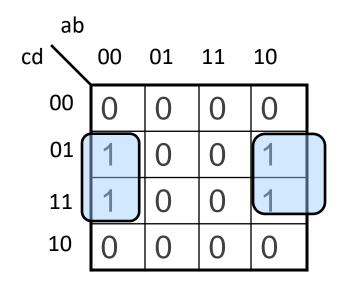


Minterms can overlap
 out =

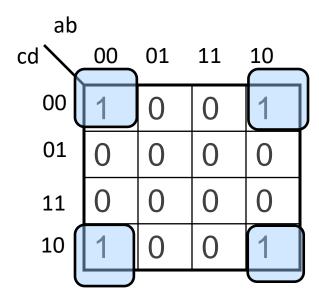
Minterms can span 2, 4, 8 or more cells

• OUt =

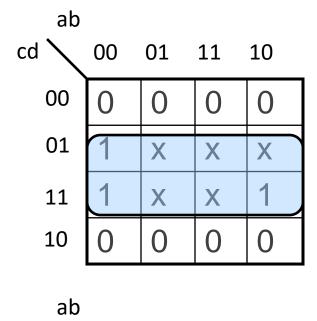
Karnaugh Minimization Tricks (2)

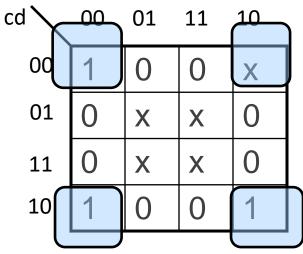


The map wraps around
 out =



Karnaugh Minimization Tricks (3)





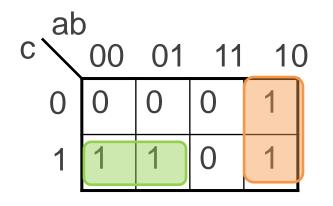
- "Don't care" values can be interpreted individually in whatever way is convenient
 - assume all x's = 1

• out =

- assume middle x's = 0
- assume 4th column x = 1

• out =

Minimization with K-Maps



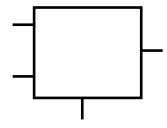
(1) Circle the 1's (see below)(2) Each circle is a logical component of the final equation

$= a\overline{b} + \overline{a}c$

Rules:

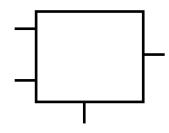
- Use fewest circles necessary to cover all 1's
- Circles must cover only 1's
- Circles span rectangles of size power of 2 (1, 2, 4, 8...)
- Circles should be as large as possible (all circles of 1?)
- Circles may wrap around edges of K-Map
- 1 may be circled multiple times *if* that means fewer circles

Multiplexer



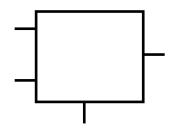
а	b	d	out
0	0	0	
0	0	1	
0	1	0	
0	1	1	
1	0	0	
1	0	1	
1	1	0	
1	1	1	

- A multiplexer selects between multiple inputs
 - out = a, if d = 0
 - out = b, if d = 1
- Build truth table
- Minimize diagram
- Derive logic diagram



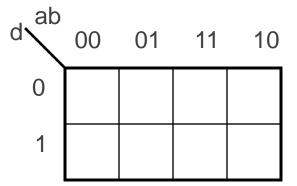
• Build a truth table out = $\overline{a}bd + a\overline{bd} + ab\overline{d} + abd$

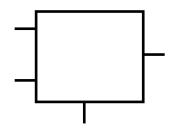
а	b	d	out
0	0	0	0
0	0	1	0
0	1	0	0
0	1	1	1
1	0	0	1
1	0	1	0
1	1	0	1
1	1	1	1



• Build the Karnaugh map

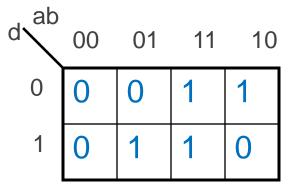
а	b	d	out
0	0	0	0
0	0	1	0
0	1	0	0
0	1	1	1
1	0	0	1
1	0	1	0
1	1	0	1
1	1	1	1

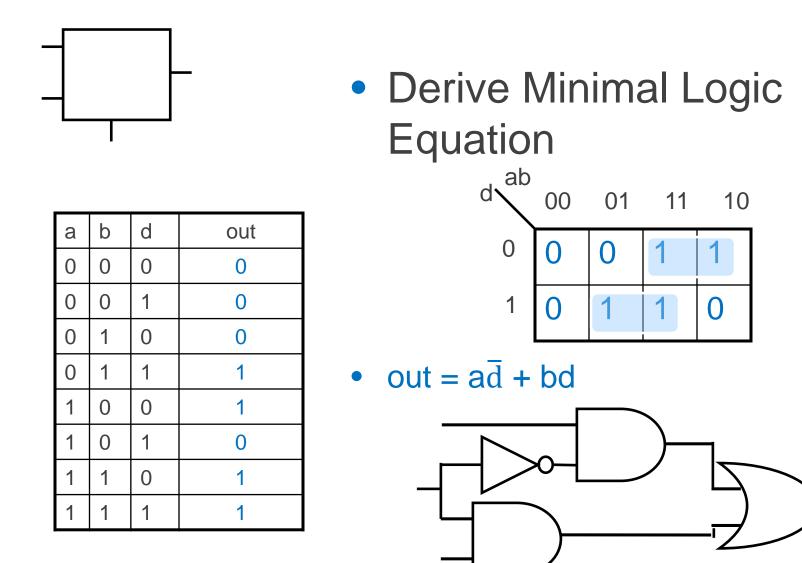




• Build the Karnaugh map

а	b	d	out
0	0	0	0
0	0	1	0
0	1	0	0
0	1	1	1
1	0	0	1
1	0	1	0
1	1	0	1
1	1	1	1





Takeaway

- Binary (two symbols: true and false) is the basis of Logic Design
- More than one Logic Circuit can implement same Logic function. Use Algebra (Identities) or Truth Tables to show equivalence.
- Any logic function can be implemented as "sum of products". Karnaugh Maps minimize number of gates.

Administrivia

Dates to keep in Mind

- Prelims: Tue Mar 5th and Thur May 2nd
- Proj 1: Due Fri Feb 15th
- Proj 2: Due Fri Mar 11th
- Proj 3: Due Thur Mar 28th before Spring break
- Final Project: Due Tue May 16th

iClicker

• Attempt to balance the iClicker graph

- Register iClicker
 - http://atcsupport.cit.cornell.edu/pollsrvc/

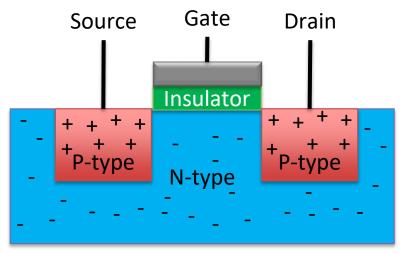
Goals for Today

- From Switches to Logic Gates to Logic Circuits
- Logic Gates
 - From switches
 - Truth Tables
- Logic Circuits
 - From Truth Tables to Circuits (Sum of Products)
 - Identity Laws
- Logic Circuit Minimization
 - Algebraic Manipulations
 - Truth Tables (Karnaugh Maps)
- Transistors (electronic switch)

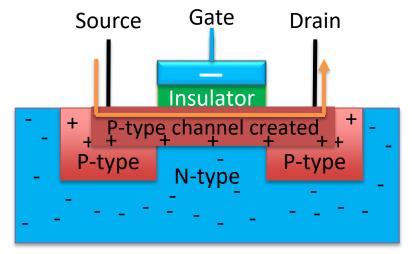
Silicon Valley & the Semiconductor Industry

- Transistors:
- Youtube video "How does a transistor work" <u>https://www.youtube.com/watch?v=lcrBqCFLHIY</u>
- Break: show some Transistor, Fab, Wafer photos

Transistors 101



P-Transistor Off



P-Transistor On

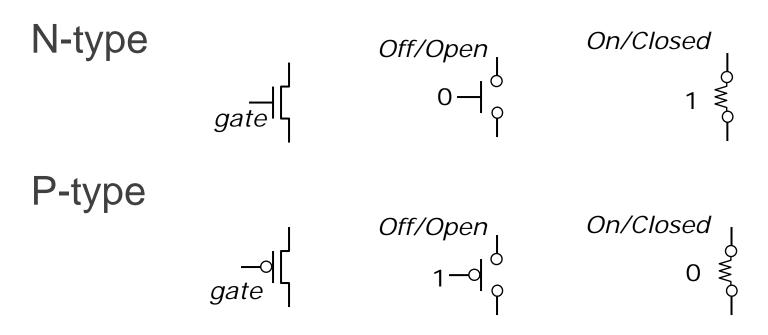
N-Type Silicon: negative free-carriers (electrons) P-Type Silicon: positive free-carriers (holes)

P-Transistor: negative charge on gate generates electric field that creates a (+ charged) p-channel connecting source & drain

N-Transistor: works the opposite way Metal-Oxide Semiconductor (Gate-Insulator-Silicon)

 Complementary MOS = CMOS technology uses both p- & ntype transistors

CMOS Notation



Gate input controls whether current can flow between the other two terminals or not.

Hint: the "o" bubble of the p-type tells you that this gate wants a 0 to be turned on

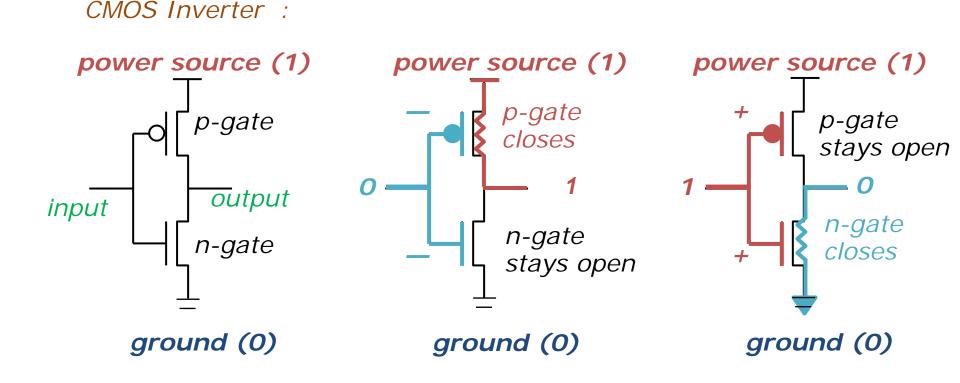
iClicker Question

Which of the following statements is **false**?

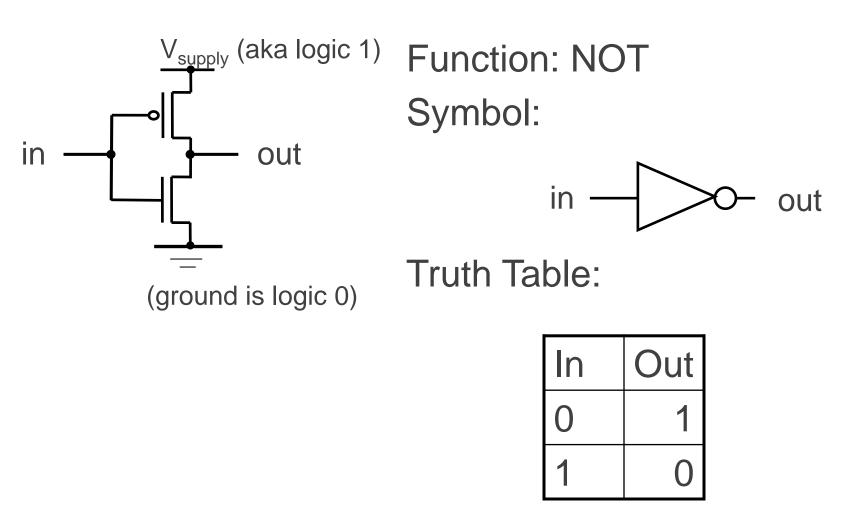
- (A) P- and N-type transistors are both used in CMOS designs.
- (B) As transistors get smaller, the frequency of your processor will keep getting faster.
- (C) As transistors get smaller, you can fit more and more of them on a single chip.
- (D) Pure silicon is a semi conductor.
- (E) Experts believe that Moore's Law will soon end.

2-Transistor Combination: NOT

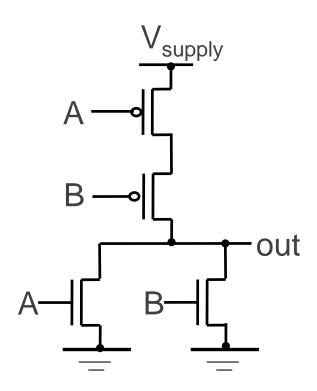
- Logic gates are constructed by combining transistors in complementary arrangements
- Combine p&n transistors to make a NOT gate:



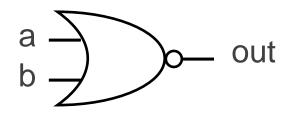
Inverter



NOR Gate



Function: NOR Symbol:

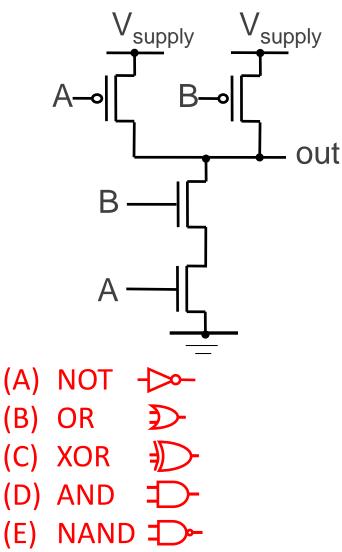


Truth Table:

Α	В	out
0	0	1
0	1	0
1	0	0
1	1	0

iClicker Question

Which Gate is this?



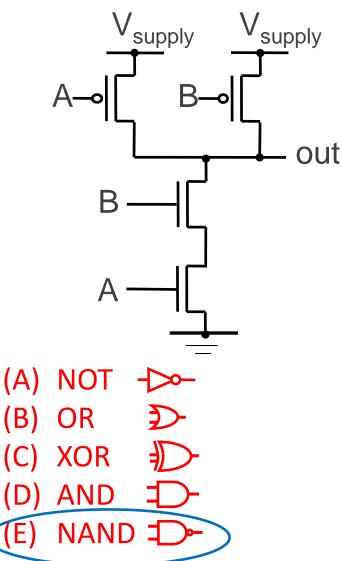
Function: Symbol:

Truth Table:

Α	В	out
0	0	
0	1	
1	0	
1	1	

iClicker Question

Which Gate is this?



Function: Symbol:

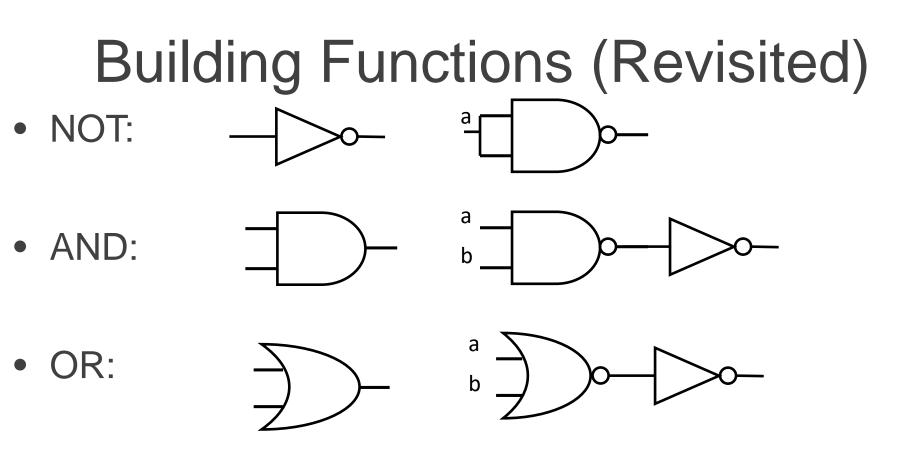
Truth Table:

Α	В	out
0	0	1
0	1	1
1	0	1
1	1	0

Building Functions (Revisited)

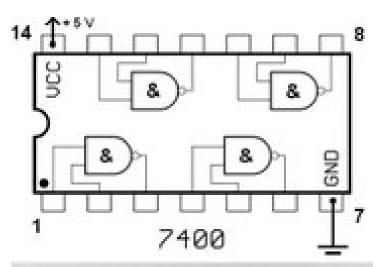
- NOT: _______
- AND:
- OR:

- NAND and NOR are universal
 - Can implement any function with NAND or just NOR gates
 - useful for manufacturing



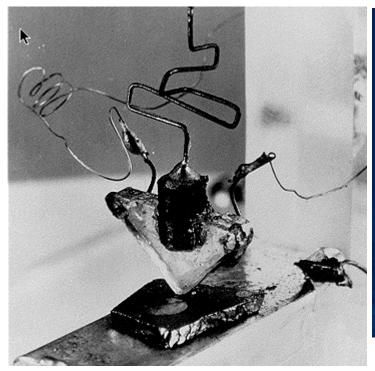
- NAND and NOR are universal
 - Can implement any function with NAND or just NOR gates
 - useful for manufacturing

Logic Gates



- One can buy gates separately
 - ex. 74xxx series of integrated circuits
 - cost ~\$1 per chip, mostly for packaging and testing
- Cumbersome, but possible to build devices using gates put together manually

Then and Now



4th Generation Intel[®] Core[™] Processor Die Map 22nm Tri-Gate 3-D Transistors System Agent Display Соге Соге Соге Соге Engine & Memory Processor

Graphics including Shared L3 Cache** Memory Controller I/O Quad core die shown above Transistor count: 1.4 Billion Die size: 177mm² Cache is shared across all 4 cores and processor graphics

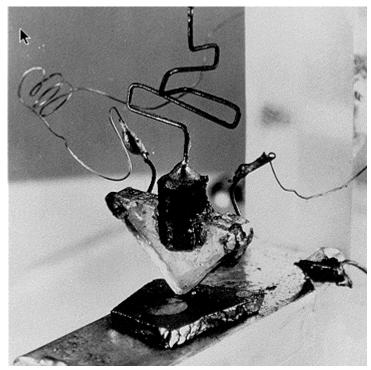
http://techguru3d.com/4th-gen-intel-haswell-processors-architecture-and-lineup/

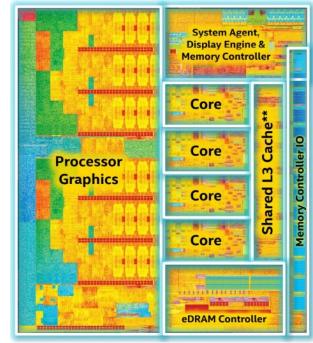
- The first transistor
 - One workbench at AT&T Bell Labs
 - 1947
 - Bardeen, Brattain, and Shockley

- Intel Haswell
 - 1.4 billion transistors, 22nm
 - 177 square millimeters
 - Four processing cores

Controlle

Then and Now





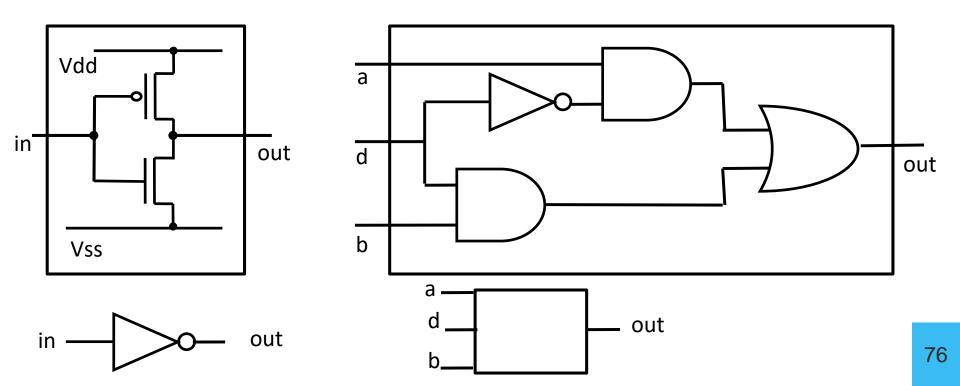
https://www.computershopper.com/computex-2015/performance-preview-desktop-broadwell-at-computex-2015/performance-preview-

- The first transistor
 - One workbench at AT&T Bell Labs
 - 1947
 - Bardeen, Brattain, and Shockley

- Intel Broadwell
 - 7.2 billion transistors, 14nm
 - 456 square millimeters
 - Up to 22 processing cores

Big Picture: Abstraction

- Hide complexity through simple abstractions
 - Simplicity
 - Box diagram represents inputs and outputs
 - Complexity
 - Hides underlying NMOS- and PMOS-transistors and atomic interactions



Summary

- Most modern devices made of billions of transistors
 - You will build a processor in this course!
 - Modern transistors made from semiconductor materials
 - Transistors used to make logic gates and logic circuits
- We can now implement any logic circuit
 - Use P- & N-transistors to implement NAND/NOR gates
 - Use NAND or NOR gates to implement the logic circuit
 - *Efficiently*: use K-maps to find required minimal terms