1/0

Hakim Weatherspoon CS 3410

Computer Science
Cornell University

The slides are the product of many rounds of teaching CS 3410 by Professors Weatherspoon, Bala, Bracy, McKee, and Sirer.

Announcements

Project5 Cache Race Games night Monday, May 7th, 5pm

- Come, eat, drink, have fun and be merry!
- Location: B11 Kimball Hall

Prelim2: *Thursday*, May 3rd in evening

- Time and Location: 7:30pm sharp in Statler Auditorium
- Old prelims are online in CMS

Project6: Malloc

- Design Doc due May 9th, bring design doc to mtg May 7-9
- Project due Tuesday, May 15th at 4:30pm
- Will not be able to use slip days

Lab Sections are Optional this week

Ask Prelim2 or Project6 questions

Goals for Today

Computer System Organization

How does a processor interact with its environment?

I/O Overview

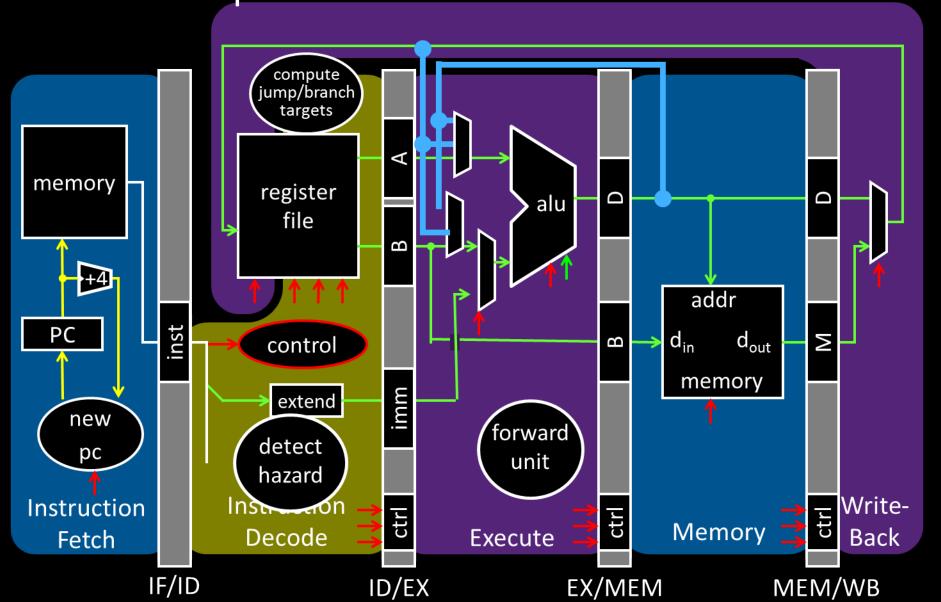
How to talk to device?

Programmed I/O or Memory-Mapped I/O

How to get events?

Polling or Interrupts

How to transfer lots of data?


Direct Memory Access (DMA)

Next Goal

How does a processor interact with its environment?

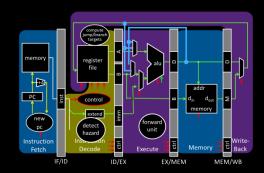
Big Picture: Input/Output (I/O)

How does a processor interact with its environment?

Big Picture: Input/Output (I/O)

How does a processor interact with its environment?

Computer System Organization =

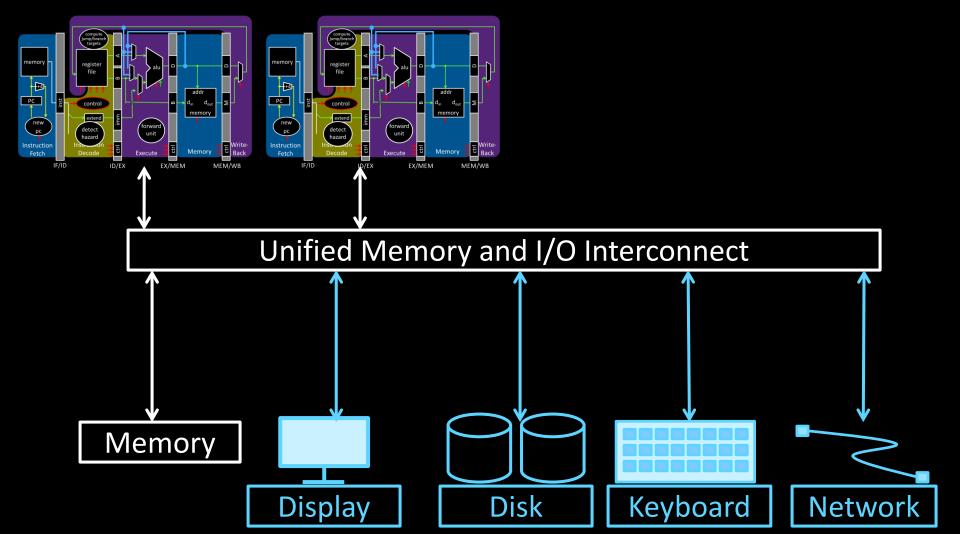

Memory +

Datapath +

Control +

Input +

Output

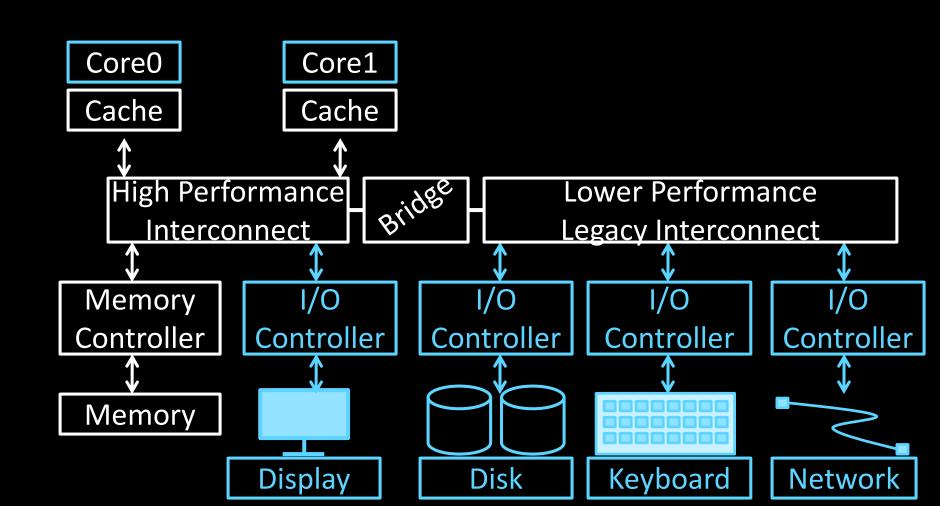


I/O Devices Enables Interacting with Environment

Device	Behavior	Partner	Data Rate (b/sec)
Keyboard	Input	Human	100
Mouse	Input	Human	3.8k
Sound Input	Input	Machine	3M
Voice Output	Output	Human	264k
Sound Output	Output	Human	8M
Laser Printer	Output	Human	3.2M
Graphics Display	Output	Human	800M – 8G
Network/LAN	Input/Output	Machine	100M – 10G
Network/Wireless LAN	Input/Output	Machine	11 – 54M
Optical Disk	Storage	Machine	5 – 120M
Flash memory	Storage	Machine	32 – 200M
Magnetic Disk	Storage	Machine	800M – 3G


Attempt#1: All devices on one interconnect

Replace *all* devices as the interconnect changes e.g. keyboard speed == main memory speed ?!


Attempt#2: I/O Controllers

Decouple I/O devices from Interconnect Enable smarter I/O interfaces

Attempt#3: I/O Controllers + Bridge

Separate high-performance processor, memory, display interconnect from lower-performance interconnect

Bus Parameters

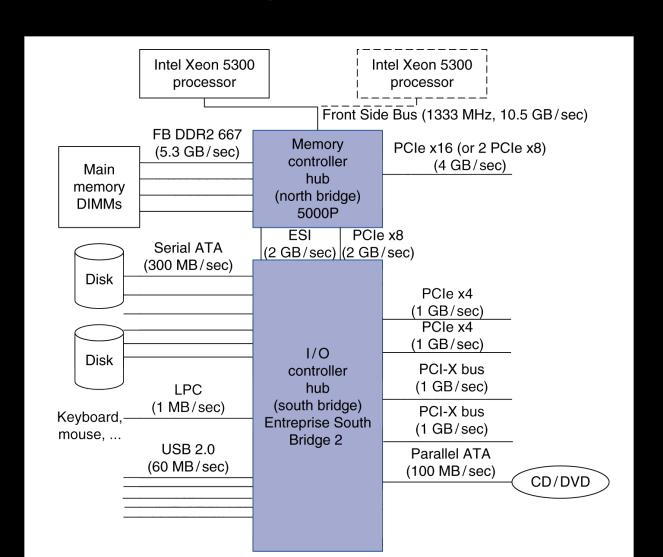
Width = number of wires

Transfer size = data words per bus transaction

Synchronous (with a bus clock) or asynchronous (no bus clock / "self clocking")

Bus Types

Processor – Memory ("Front Side Bus". Also QPI)


- Short, fast, & wide
- Mostly fixed topology, designed as a "chipset"
 - CPU + Caches + Interconnect + Memory Controller

I/O and Peripheral busses (PCI, SCSI, USB, LPC, ...)

- Longer, slower, & narrower
- Flexible topology, multiple/varied connections
- Interoperability standards for devices
- Connect to processor-memory bus through a bridge

Attempt#3: I/O Controllers + Bridge

Separate high-performance processor, memory, display interconnect from lower-performance interconnect

Example Interconnects

Name	Use	Devics per channel	Channel Width	Data Rate (B/sec)
Firewire 800	External	63	4	100M
USB 2.0	External	127	2	60M
USB 3.0	External	127	2	625M
Parallel ATA	Internal	1	16	133M
Serial ATA (SATA)	Internal	1	4	300M
PCI 66MHz	Internal	1	32-64	533M
PCI Express v2.x	Internal	1	2-64	16G/dir
Hypertransport v2.x	Internal	1	2-64	25G/dir
QuickPath (QPI)	Internal	1	40	12G/dir

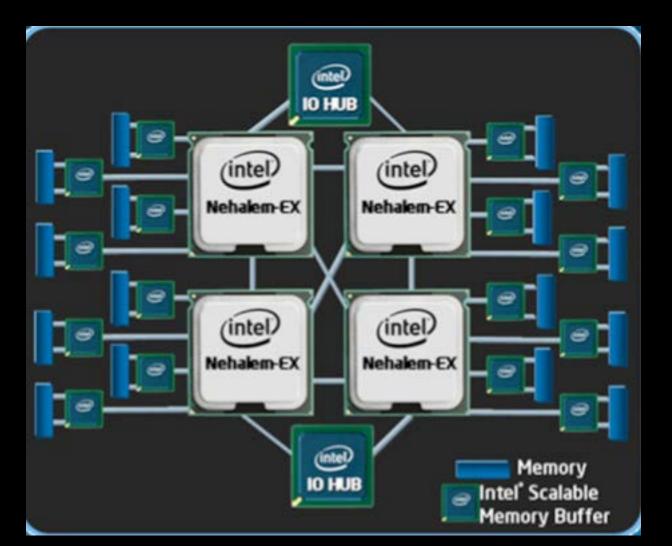
Interconnecting Components

Interconnects are (were?) busses

- parallel set of wires for data and control
- shared channel
 - multiple senders/receivers
 - everyone can see all bus transactions
- bus protocol: rules for using the bus wires

e.g. Intel Xeon

Alternative (and increasingly common): Nehalem


dedicated point-to-point channels

e.g. Intel

Attemptita, if a controllers i bridge i

NUMA
Remove bridge as bottleneck with Point-to-point interconnects

E.g. Non-Uniform Memory Access (NUMA)

Takeaways

Diverse I/O devices require hierarchical interconnect which is more recently transitioning to point-to-point topologies.

Next Goal

How does the processor interact with I/O devices?

I/O Device Driver Software Interface

Set of methods to write/read data to/from device and control device Example: Linux Character Devices

```
// Open a toy " echo " character device
int fd = open("/dev/echo", O RDWR);
// Write to the device
char write buf[] = "Hello World!";
write(fd, write buf, sizeof(write buf));
// Read from the device
char read buf [32];
read(fd, read buf, sizeof(read buf));
// Close the device
close(fd);
// Verify the result
assert(strcmp(write buf, read buf)==0);
```

I/O Device API

Typical I/O Device API

a set of read-only or read/write registers

Command registers

writing causes device to do something

Status registers

reading indicates what device is doing, error codes, ...

Data registers

- Write: transfer data to a device
- Read: transfer data from a device

Every device uses this API

I/O Device API

Simple (old) example: AT Keyboard Device

8-bit Status:

PE

TO

AUXB LOCK

AL2

SYSF

IBS

OBS

8-bit Command:

0xAA = "self test"

0xAE = "enable kbd"

0xED = "set LEDs"

Input

Input

Buffer

Buffer

Stats

Stats

•••

8-bit Data:

scancode (when reading)

LED state (when writing) or ...

Communication Interface

Q: How does program OS code talk to device?

A: special instructions to talk over special busses

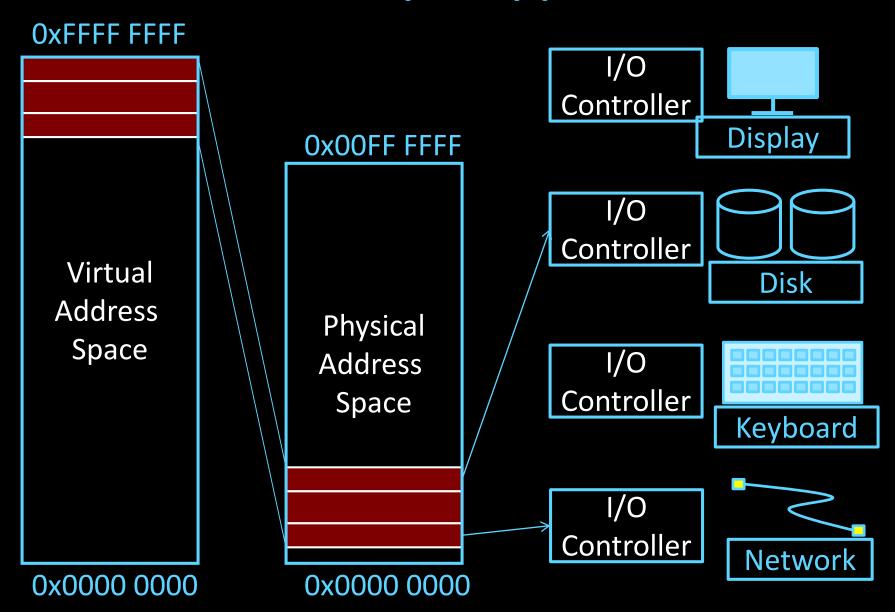
Programmed I/O ← Interact with cmd, status, and data device registers directly

- inb \$a, 0x64 ← kbd status register
- outb \$a, 0x60 ← kbd data register
- Specifies: device, data, direction
- Protection: only allowed in kernel mode

Kernel boundary crossinging is expensive

*x86: \$a implicit; also inw, outw, inh, outh, ...

Communication Interface


Q: How does program OS code talk to device?

A: Map registers into virtual address space

Memory-mapped I/O ← Faster. Less boundary crossing

- Accesses to certain addresses redirected to I/O devices
- Data goes over the memory bus
- Protection: via bits in pagetable entries
- OS+MMU+devices configure mappings

Memory-Mapped I/O

Device Drivers

```
Programmed I/O
                             Memory Mapped I/O
          Polling examples,
                             struct kbd {
          But mmap I/O more
                               char status, pad[3];
          efficient
                               char data, pad[3];
char read kbd()
                             };
                             kbd *k = mmap(...);
do {
    sleep();
                                                   syscall
                             char read_kbd()
    status = inb(0x64);
   while(!(status & 1));
                               do {
                                 sleep();
  return inb(0x60);
                                  status = k->status;
                        NO
                               } while(!(status & 1));
          syscall
                        syscal
                                return k->data;
```

Comparing Programmed I/O vs Memory Mapped I/O

Programmed I/O

- Requires special instructions
- Can require dedicated hardware interface to devices
- Protection enforced via kernel mode access to instructions
- Virtualization can be difficult

Memory-Mapped I/O

- Re-uses standard load/store instructions
- Re-uses standard memory hardware interface
- Protection enforced with normal memory protection scheme
- Virtualization enabled with normal memory virtualization scheme

Takeaways

Diverse I/O devices require hierarchical interconnect which is more recently transitioning to point-to-point topologies.

Memory-mapped I/O is an elegant technique to read/write device registers with standard load/stores.

Next Goal

How does the processor know device is ready/done?

Communication Method

Q: How does program learn device is ready/done?

Takeaways

Diverse I/O devices require hierarchical interconnect which is more recently transitioning to point-to-point topologies.

Memory-mapped I/O is an elegant technique to read/write device registers with standard load/stores.

Interrupt-based I/O avoids the wasted work in polling-based I/O and is usually more efficient

Next Goal

How do we transfer a *lot* of data *efficiently*?

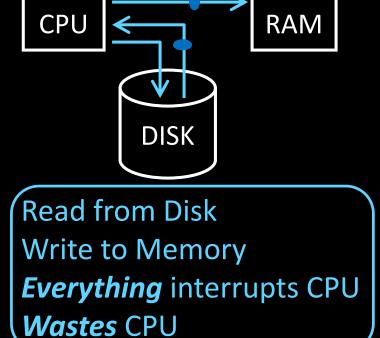
I/O Data Transfer

How to talk to device?

- Programmed I/O or Memory-Mapped I/O
- How to get events?
 - Polling or Interrupts

How to transfer lots of data?

```
disk->cmd = READ_4K_SECTOR;
disk->data = 12;
while (!(disk->status & 1) {
for (i = 0..4k)
   buf[i] = disk->data;
```


Very, *Very,* Expensive

I/O Data Transfer

Programmed I/O xfer: Device $\leftarrow \rightarrow$ CPU

for
$$(i = 1 ... n)$$

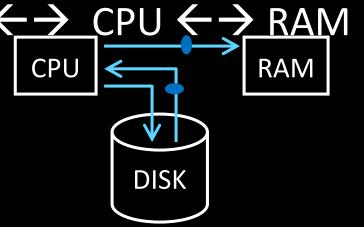
- CPU issues read request
- Device puts data on bus& CPU reads into registers
- CPU writes data to memory
- Not efficient

I/O Data Transfer

Q: How to transfer lots of data efficiently?

A: Have device access memory directly

Direct memory access (DMA)


- 1) OS provides starting address, length
- 2) controller (or device) transfers data autonomously
- 3) Interrupt on completion / error

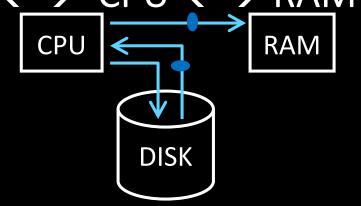
DMA: Direct Memory Access

Programmed I/O xfer: Device $\leftarrow \rightarrow$ CPU

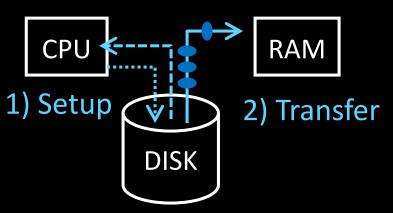
for (i = 1 ... n)

- CPU issues read request
- Device puts data on bus& CPU reads into registers
- CPU writes data to memory

DMA: Direct Memory Access


Programmed I/O xfer: Device $\leftarrow \rightarrow$ CPU $\leftarrow \rightarrow$ RAM

for
$$(i = 1 ... n)$$


- CPU issues read request
- Device puts data on bus & CPU reads into registers
- CPU writes data to memory

DMA xfer: Device $\leftarrow \rightarrow$ RAM

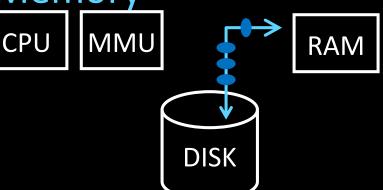
- CPU sets up DMA request
- for (i = 1 ... n)Device puts data on bus & RAM accepts it
- Device interrupts CPU after done

3) Interrupt after done

DMA Example

DMA example: reading from audio (mic) input

DMA engine on audio device... or I/O controller ... or ...


```
int dma_size = 4*PAGE_SIZE;
int *buf = alloc_dma(dma_size);
...
dev->mic_dma_baseaddr = (int)buf;
dev->mic_dma_count = dma_len;
dev->cmd = DEV_MIC_INPUT |
DEV_INTERRUPT_ENABLE | DEV_DMA_ENABLE;
```

DMA Issues (1): Addressing

Issue #1: DMA meets Virtual Memory

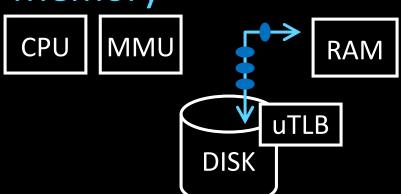
RAM: physical addresses

Programs: virtual addresses

DMA Example

DMA example: reading from audio (mic) input

DMA engine on audio device... or I/O controller ... or
 ...

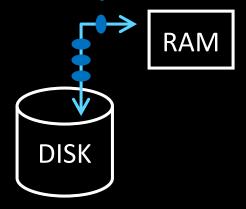

```
int dma_size = 4*PAGE_SIZE;
void *buf = alloc_dma(dma_size);
...
dev->mic_dma_baseaddr = virt_to_phys(buf);
dev->mic_dma_count = dma_len;
dev->cmd = DEV_MIC_INPUT |
DEV_INTERRUPT_ENABLE | DEV_DMA_ENABLE;
```

DMA Issues (1): Addressing

Issue #1: DMA meets Virtual Memory

RAM: physical addresses

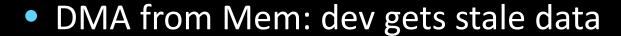
Programs: virtual addresses



DMA Issues (2): Virtual Mem

Issue #2: DMA meets *Paged* Virtual Memory

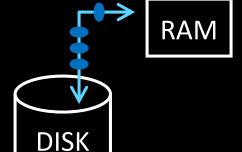
DMA destination page may get swapped out


DMA Issues (4): Caches

Issue #4: DMA meets Caching

DMA-related data could be cached in L1/L2

DMA to Mem: cache is now stale



DMA Issues (4): Caches

Issue #4: DMA meets Caching

DMA-related data could be cached in L1/L2

- DMA to Mem: cache is now stale
- DMA from Mem: dev gets stale data

Solution 2: (hardware coherence aka snooping)

- cache listens on bus, and conspires with RAM
- DMA to Mem: invalidate/update data seen on bus
- DMA from mem: cache services request if possible, otherwise RAM services

Takeaways

Diverse I/O devices require hierarchical interconnect which is more recently transitioning to point-to-point topologies.

Memory-mapped I/O is an elegant technique to read/write device registers with standard load/stores.

Interrupt-based I/O avoids the wasted work in polling-based I/O and is usually more efficient.

Modern systems combine memory-mapped I/O, interrupt-based I/O, and direct-memory access to create sophisticated I/O device subsystems.

I/O Summary

How to talk to device?

Programmed I/O or Memory-Mapped I/O

How to get events?

Polling or Interrupts

How to transfer lots of data?

DMA