Gates and Logic: From switches to Transistors, Logic Gates and Logic Circuits

Hakim Weatherspoon CS 3410, Spring 2013

Computer Science
Cornell University

See: P&H Appendix C.2 and C.3 (Also, see C.0 and C.1)

Goals for Today

From Switches to Logic Gates to Logic Circuits

Logic Gates

- From switches
- Truth Tables

Logic Circuits

- Identity Laws
- From Truth Tables to Circuits (Sum of Products)

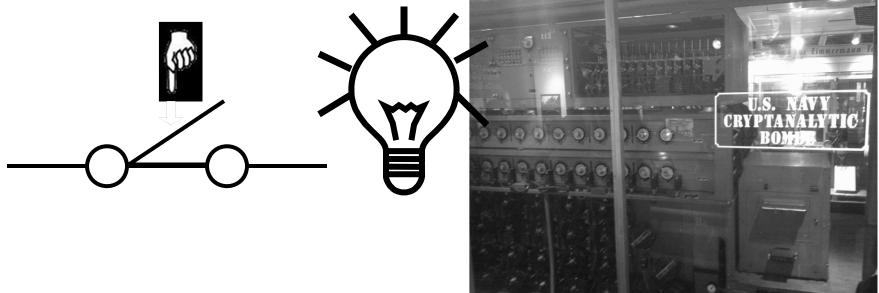
Logic Circuit Minimization

- Algebraic Manipulations
- Truth Tables (Karnaugh Maps)

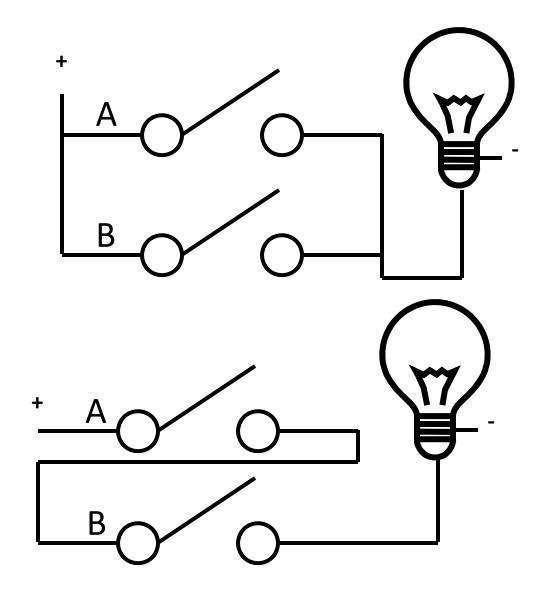
Transistors (electronic switch)

A switch

- Acts as a conductor or insulator
- Can be used to build amazing things...



The Bombe used to break the German Enigma machine during World War II



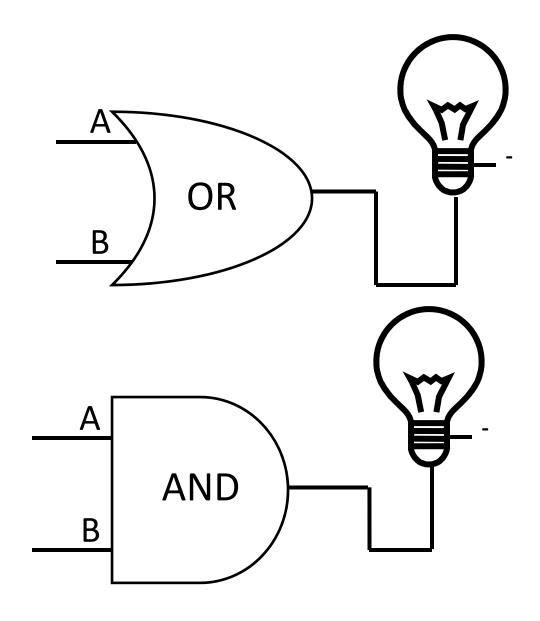
Either (OR)

Truth Table

Α	В	Light
OFF	OFF	
OFF	ON	
ON	OFF	
ON	ON	

Both (AND)

Α	В	Light
OFF	OFF	
OFF	ON	
ON	OFF	
ON	ON	



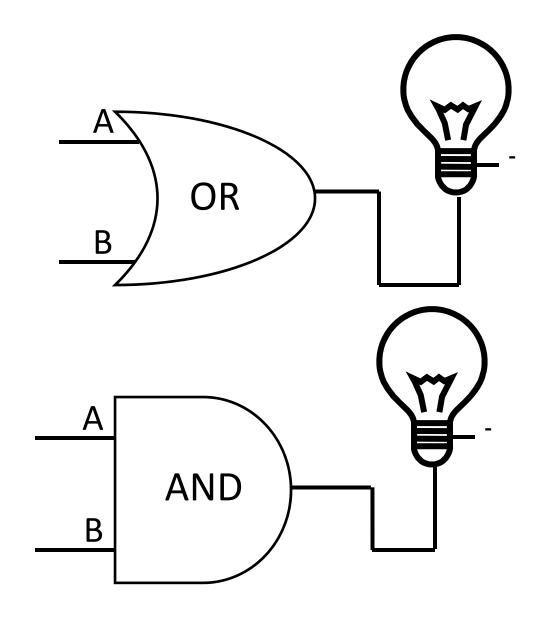
Either (OR)

Truth Table

Α	В	Light
OFF	OFF	
OFF	ON	
ON	OFF	
ON	ON	

Both (AND)

_			
	Α	В	Light
	OFF	OFF	
	OFF	ON	
Ī	ON	OFF	
	ON	ON	



Either (OR)

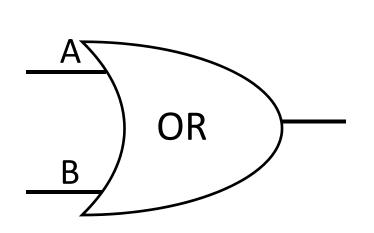
Truth Table

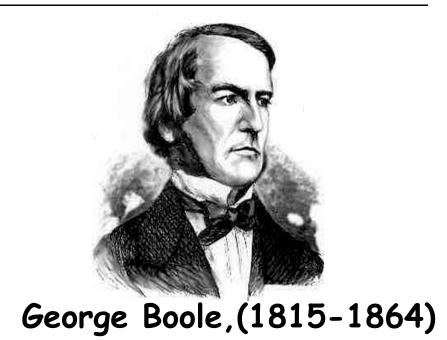
Α	В	Light
0	0	
0	1	
1	0	
1	1	

0 = OFF1 = ON

Both (AND)

Α	В	Light
0	0	
0	1	
1	0	
1	1	





A AND B

Did you know?

George Boole Inventor of the idea of logic gates. He was born in Lincoln, England and he was the son of a shoemaker in a low class family.

Takeaway

Binary (two symbols: true and false) is the basis of Logic Design

Building Functions: Logic Gates



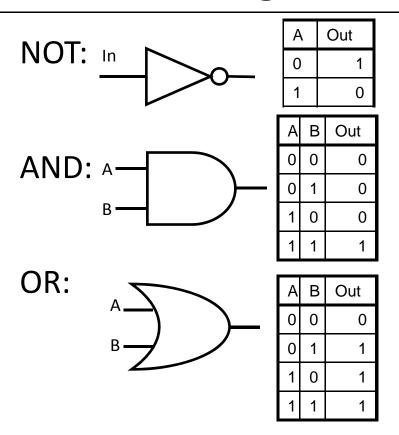
Logic Gates

- digital circuit that either allows a signal to pass through it or not.
- Used to build logic functions
- There are seven basic logic gates:

AND, OR, **NOT**,

NAND (not AND), NOR (not OR), XOR, and XNOR (not XOR) [later]

Building Functions: Logic Gates



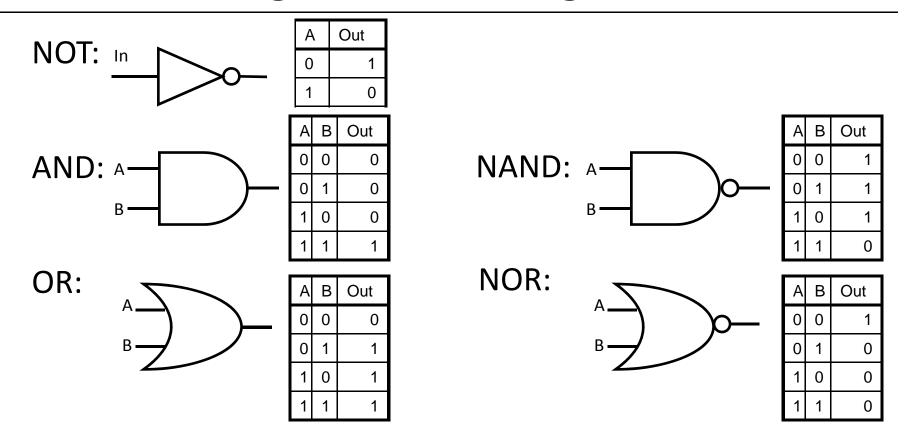
Logic Gates

- digital circuit that either allows a signal to pass through it or not.
- Used to build logic functions
- There are seven basic logic gates:

AND, OR, **NOT**,

NAND (not AND), NOR (not OR), XOR, and XNOR (not XOR) [later]

Building Functions: Logic Gates



Logic Gates

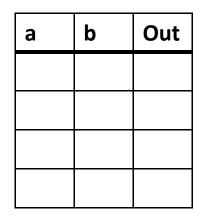
- digital circuit that either allows a signal to pass through it or not.
- Used to build logic functions
- There are seven basic logic gates:

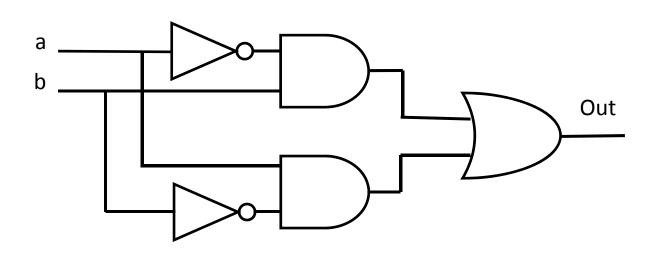
AND, OR, **NOT**,

NAND (not AND), NOR (not OR), XOR, and XNOR (not XOR) [later]

Activity#1.A: Logic Gates

Fill in the truth table, given the following Logic Circuit made from Logic AND, OR, and NOT gates. What does the logic circuit do?

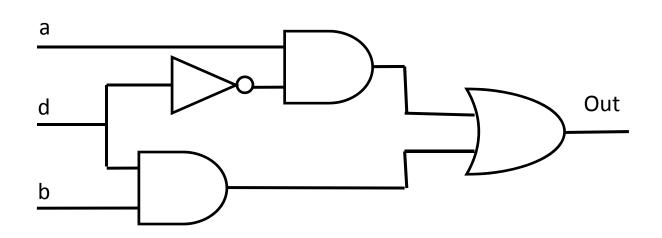




Activity#1: Logic Gates

Fill in the truth table, given the following Logic Circuit made from Logic AND, OR, and NOT gates. What does the logic circuit do?

а	b	d	Out
0	0	0	
0	0	1	
0	1	0	
0	1	1	
1	0	0	
1	0	1	
1	1	0	
1	1	1	



Goals for Today

From Switches to Logic Gates to Logic Circuits

Logic Gates

- From switches
- Truth Tables

Logic Circuits

- Identity Laws
- From Truth Tables to Circuits (Sum of Products)

Logic Circuit Minimization

- Algebraic Manipulations
- Truth Tables (Karnaugh Maps)

Transistors (electronic switch)

Next Goal

Given a Logic function, create a Logic Circuit that implements the Logic Function...

...and, with the minimum number of logic gates

Fewer gates: A cheaper (\$\$\$) circuit!

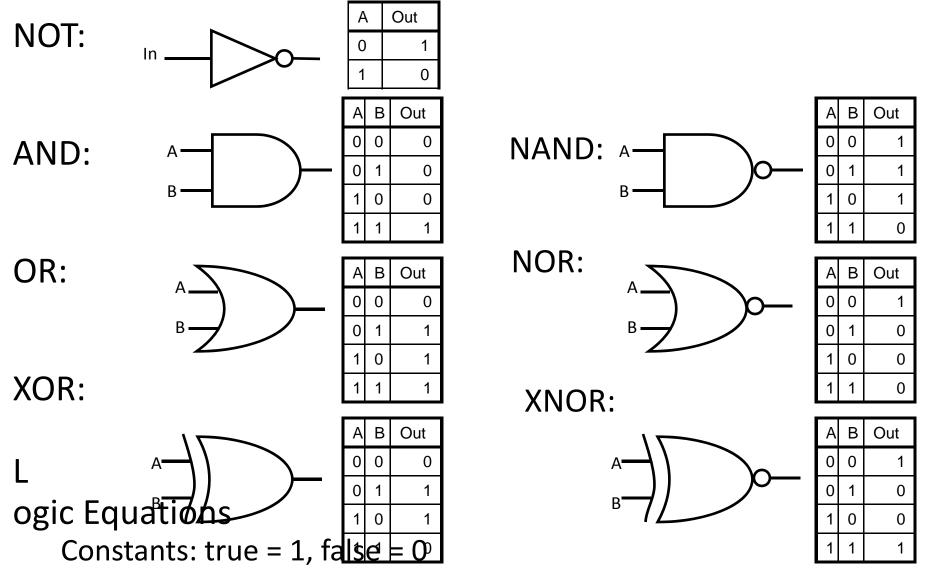
Logic Gates

NOT		Δ	\	Out	
NOT:		0)	1	
		1		0	
		Α	В	Out	
AND: A—		0	0	0	
) —	0	1	0	
В —		1	0	0	
		1	1	1	
OR:		Α	В	Out	
A_	<u> </u>	0	0	0	
В —	1 /	0	1	1	
4		1	0	1	
XOR:		1	1	1	
17		Α	В	Out	
A—— \		0	0	0	
B. C. B.		0	1	1	
ogic Equation		1	0	1	
Constants:	true = 1, fa	\$	ď	= 0 ⁰	
\					

Variables: a, b, out, ...

Operators (above): AND, OR, NOT, etc.

Logic Gates



Variables: a, b, out, ...

Operators (above): AND, OR, NOT, etc.

Logic Equations

NOT:

• out = \bar{a} = -a

AND:

• out = $a \cdot b$ = $a \otimes b$ = $a \wedge b$

OR:

• out = $a + b = a | b = a \lor b$

XOR:

• out = $a \oplus b = a\overline{b} + \overline{a}b$

Logic Equations

- Constants: true = 1, false = 0
- Variables: a, b, out, ...
- Operators (above): AND, OR, NOT, etc.

Logic Equations

NOT:
• out =
$$\overline{a}$$
 = !a = $\neg a$

AND:
• out = $\overline{a \cdot b}$ = a & b = $\overline{a \cdot b}$ • out = $\overline{a \cdot b}$ = !(a & b) = \neg (a \lambda b)

OR:
• out = $\overline{a + b}$ = \overline{a} | b = \overline{a} \lambda out = $\overline{a + b}$ = !(a | b) = \neg (a \lambda b)

XOR:
• out = $\overline{a \oplus b}$ = \overline{ab} + \overline{ab}

Logic Equations

- Constants: true = 1, false = 0
- Variables: a, b, out, ...
- Operators (above): AND, OR, NOT, etc.

Identities

Identities useful for manipulating logic equations

- For optimization & ease of implementation

$$a + 0 =$$

$$a + 1 =$$

$$a \cdot 0 =$$

$$a \cdot 1 =$$

$$a \cdot \bar{a} =$$

Identities

Identities useful for manipulating logic equations

For optimization & ease of implementation

$$\overline{(a+b)} =$$

$$\overline{(a \cdot b)} =$$

$$a + ab =$$

$$a(b+c) =$$

$$\overline{a(b+c)} =$$

Logic Manipulation

functions: gates ↔ truth tables ↔ equations

• Example: (a+b)(a+c) = a + bc

а	b	С			
0	0	0			
0	0	1			
0	1	0			
0	1	1			
1	0	0			
1	0	1			
1	1	0			
1	1	1			

Takeaway

Binary (two symbols: true and false) is the basis of Logic Design

More than one Logic Circuit can implement same Logic function. Use Algebra (Identities) or Truth Tables to show equivalence.

Next Goal

How to standardize minimizing logic circuits?

Logic Minimization

How to implement a desired logic function?

a	b	С	out
0	0	0	0
0	0	1	1
0	1	0	0
0	1	1	1
1	0	0	0
1	0	1	1
1	1	0	0
1	1	1	0

Logic Minimization

How to implement a desired logic function?

a	b	С	out	minterm
0	0	0	0	a b c
0	0	1	1	a b c
0	1	0	0	a b c
0	1	1	1	a b c
1	0	0	0	a b c
1	0	1	1	a <mark>b</mark> c
1	1	0	0	a b c
1	1	1	0	a b c

- 1) Write minterm's
- 2) sum of products:
- OR of all minterms where out=1

Karnaugh Maps

How does one find the most efficient equation?

- Manipulate algebraically until...?
- Use Karnaugh maps (optimize visually)
- Use a software optimizer

For large circuits

Decomposition & reuse of building blocks

Minimization with Karnaugh maps (1)

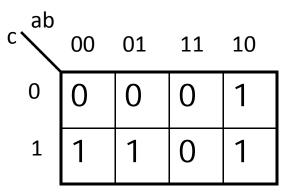
а	b	С	out
0	0	0	0
0	0	1	1
0	1	0	0
0	1	1	1
1	0	0	1
1	0	1	1
1	1	0	0
1	1	1	0

Sum of minterms yields?

■ out =

Minimization with Karnaugh maps (2)

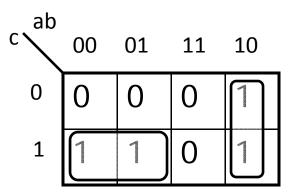
а	b	С	out
0	0	0	0
0	0	1	1
0	1	0	0
0	1	1	1
1	0	0	1
1	0	1	1
1	1	0	0
1	1	1	0



- Sum of minterms yields?
 - out =
- Karnaugh maps identify which inputs are (ir)relevant to the output

Minimization with Karnaugh maps (2)

а	b	С	out
0	0	0	0
0	0	1	1
0	1	0	0
0	1	1	1
1	0	0	1
1	0	1	1
1	1	0	0
1	1	1	0



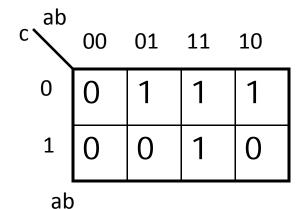
Sum of minterms yields?

■ out =

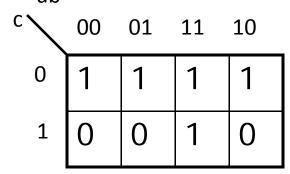
- Karnaugh map minimization
 - Cover all 1's
 - Group adjacent blocks of 2ⁿ
 1's that yield a rectangular shape
 - Encode the common features of the rectangle

• out =
$$a\overline{b}$$
 + $\overline{a}c$

Karnaugh Minimization Tricks (1)

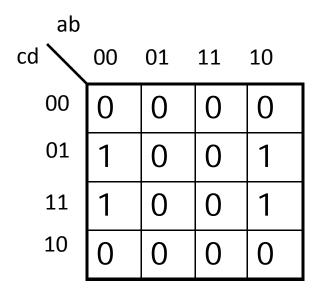


■ out =



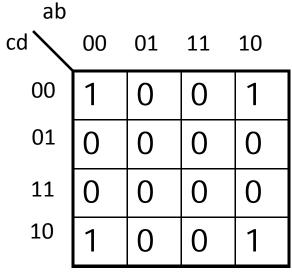
- Minterms can span 2, 4, 8 or more cells
 - out =

Karnaugh Minimization Tricks (2)



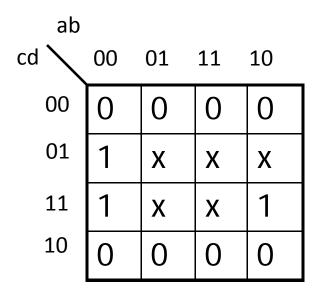
The map wraps around

• out =



• out =

Karnaugh Minimization Tricks (3)



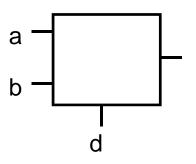
ab cd ` 00 01 11 10 00 ()X 01 0 0 X X 11 \mathbf{O} X X 10 0 ()

"Don't care" values can be interpreted individually in whatever way is convenient

- assume all x's = 1
- out =

- assume middle x's = 0
- assume 4th column x = 1
- out =

Multiplexer



а	b	d	out
0	0	0	
0	0	1	
0	1	0	
0	1	1	
1	0	0	
1	0	1	
1	1	0	
1	1	1	

A multiplexer selects between multiple inputs

Build truth table

Minimize diagram

Derive logic diagram

Takeaway

Binary (two symbols: true and false) is the basis of Logic Design

More than one Logic Circuit can implement same Logic function. Use Algebra (Identities) or Truth Tables to show equivalence.

Any logic function can be implemented as "sum of products". Karnaugh Maps minimize number of gates.

Goals for Today

From Transistors to Gates to Logic Circuits

Logic Gates

- From transistors
- Truth Tables

Logic Circuits

- Identity Laws
- From Truth Tables to Circuits (Sum of Products)

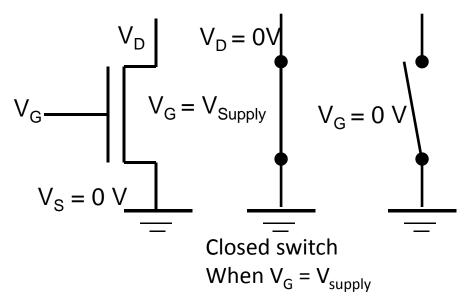
Logic Circuit Minimization

- Algebraic Manipulations
- Truth Tables (Karnaugh Maps)

Transistors (electronic switch)

NMOS and **PMOS** Transistors

NMOS Transistor



- Connect source to drain when $V_G = V_{supply}$
- N-channel transistor

PMOS Transistor $V_{Supply} V_{Supply} V_{Supply}$ $V_{G} = V_{Supply} V_{G} = 0 V$ $V_{D} V_{D} = V_{Supply}$ $V_{D} = V_{Supply}$

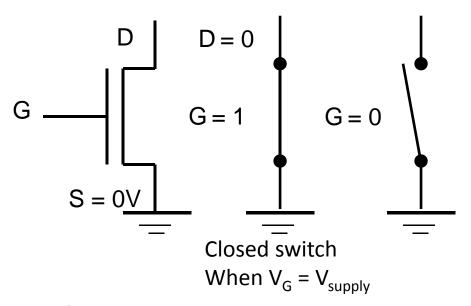
Connect source to drain when $V_G = 0 V$

P-channel transistor

 V_S : voltage at the source V_D : voltage at the drain V_{supply} : max voltage (aka a logical 1) ____ (ground): min voltage (aka a logical 0)

NMOS and PMOS Transistors

NMOS Transistor



- Connect source to drain when gate = 1
- N-channel transistor

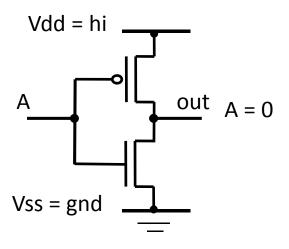
PMOS Transistor $V_{supply} V_{supply}$ G = 1 D = 1Closed switch $When V_G = 0 V$

Connect source to drain when gate = 0

P-channel transistor

V_S: voltage at the source
V_D: voltage at the drain
V_{supply}: max voltage (aka a logical 1)
(ground): min voltage (aka a logical 0)

Inverter



Α	Out
0	1
1	0

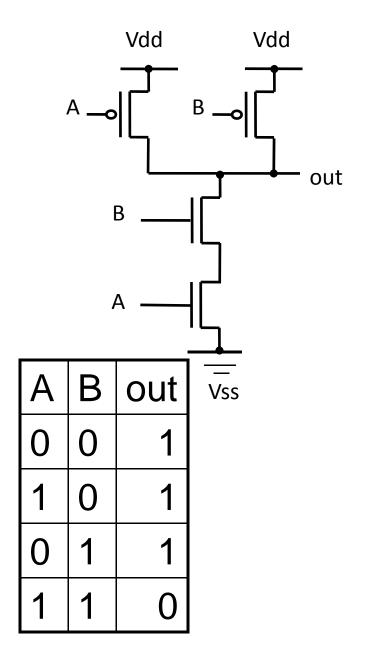
Truth table

Function: NOT

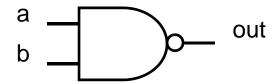
- Called an inverter
- Symbol:

- Useful for taking the inverse of an input
- CMOS: complementary-symmetry metal-oxidesemiconductor

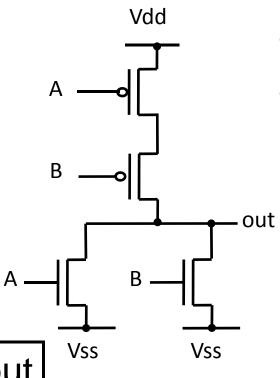
NAND Gate



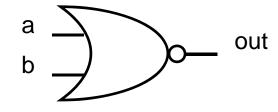
- Function: NAND
- Symbol:



NOR Gate

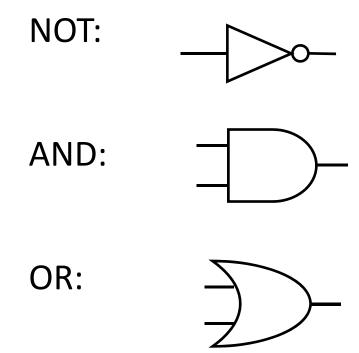


- Function: NOR
- Symbol:



Α	В	out
0	0	1
1	0	0
0	1	0
1	1	0

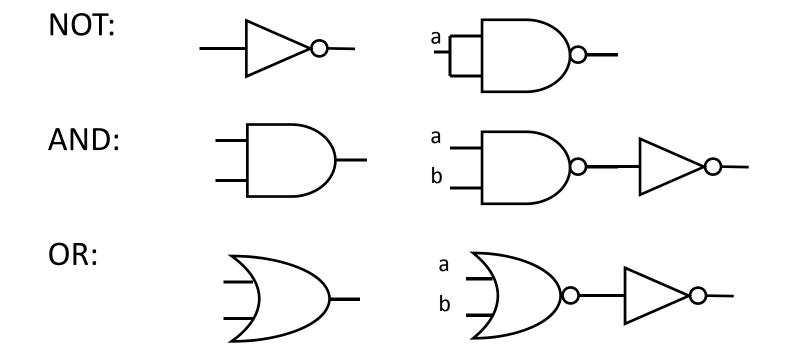
Building Functions (Revisited)



NAND and NOR are universal

- Can implement any function with NAND or just NOR gates
- useful for manufacturing

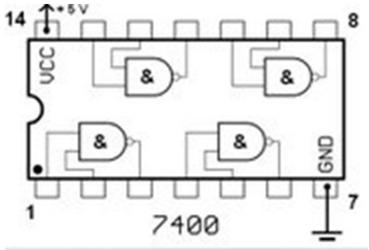
Building Functions (Revisited)

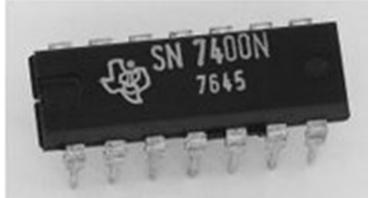


NAND and NOR are universal

- Can implement any function with NAND or just NOR gates
- useful for manufacturing

Logic Gates



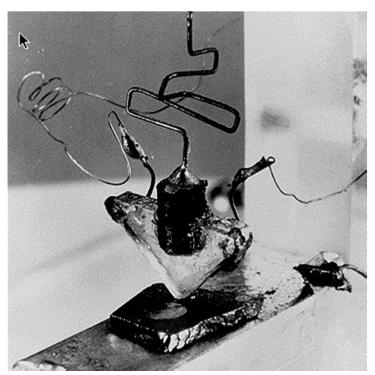


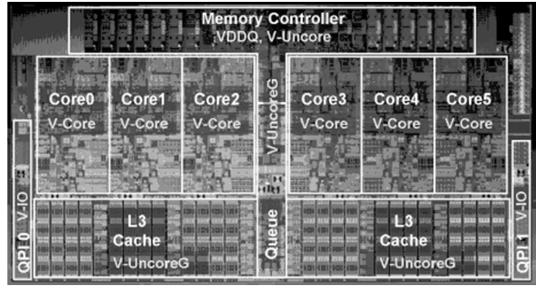
One can buy gates separately

- ex. 74xxx series of integrated circuits
- cost ~\$1 per chip, mostly for packaging and testing

Cumbersome, but possible to build devices using gates put together manually

Then and Now





http://www.theregister.co.uk/2010/02/03/intel_westmere_ep_preview/

The first transistor

- on a workbench at
 AT&T Bell Labs in 1947
- Bardeen, Brattain, and Shockley

An Intel Westmere

- 1.17 billion transistors
- 240 square millimeters
- Six processing cores

Summary

Most modern devices are made from billions of on /off switches called transistors

- We will build a processor in this course!
- Transistors made from semiconductor materials:
 - MOSFET Metal Oxide Semiconductor Field Effect Transistor
 - NMOS, PMOS Negative MOS and Positive MOS
 - CMOS Complimentary MOS made from PMOS and NMOS transistors
- Transistors used to make logic gates and logic circuits

We can now implement any logic circuit

- Can do it efficiently, using Karnaugh maps to find the minimal terms required
- Can use either NAND or NOR gates to implement the logic circuit
- Can use P- and N-transistors to implement NAND or NOR gates

Big Picture: Abstraction

Hide complexity through simple abstractions

- Simplicity
 - Box diagram represents inputs and outputs
- Complexity
 - Hides underlying P- and N-transistors and atomic

