Introduction to C

Why use C instead of Java

Intermediate-level language:
— Low-level features like raw memory tweaking
— High-level features like complex data-structures

Access to all the details of the implementation
— Explicit memory management
— Explicit error detection

More power than Java (so may be made faster)

All this make C a far better choice for system
programming.

Common Syntax with Java

« Basic types are similar (int, short,
double...)

* Operators:

— Arithmetic:
+ - * /%
++ —=- *= 4=

— Relational: <,>,<=,>=,==, I=
— Logical: &&, ||, ', ? :
— Bit: &,|,*,!,<<,>>

Common Syntax with Java
(cont.)

» Language constructs:
if() {...} else {...}
while() {...}
do {...} while();
for (1i=0; i<100; i++) {...}
switch() { case 0: ... break; ... }
break, continue, return

* No exception handling statements

=» most functions return errors as special values
(e.g., a negative number). Check for these!

Hello World Example

hello.c | /* Hello World program */
#include <stdio.h>
#include <stdlib.h>

int main(int ac, char **av) {
printf ("Hello World.");

}

bashor| $./hello
cmd.exel Hello World.

Primitive Types

* Integer types:

— char : used to represent ASCII characters or one byte of data
(not 16 bit like in Java)

- int, short and long : versions of integer (architecture
dependent, usually 4, 2, and 4 bytes)

— signed char/short/int/long
— unsigned char/short/int/long

=» conversion between signed/unsigned often does unexpected
things

* Floating point types: £1loat and double like in Java.
* No boolean type, int usually used instead.

— 0 ==false

— everything else == true

Primitive Types Examples

char c='A"';

char c=65;

int i=-2343234;

unsigned int ui=100000000;

float pi=3.14;
double long pi=0.31415e+l1;

Arrays and Strings

* Arrays:
int A[10]; // declare and allocate space for array
for (int i=0; i<10; i++) // initialize the elements

A[i]=0;

e Strings: arrays of char terminated by \O" char

char name[] ="CS316"; //{'C','s',‘3",'1',‘6"',"'\0"}
name[2] = '3"';
name[4]++;

— Strings are mutable

— Common functions strcpy, strcmp, strcat, strstr, strchr,
strdup.

— Use #include <string.h>

Pointers

« An 'address' is an index to a memory location (where some variable
is stored).
« A'pointer' is a variable containing an address to data of a certain
type.
Declaring pointer variables:
int 1i;
int* p; // p points to some random location - null pointer
Creating and using pointer values

p = &i; // p points to integer i - p stores the address of i
(*p) = 3; // variable pointed by p takes value 3

« & is the address-of operator, * is the dereference operator.
« Similar to references in Java.
« Pointers are nearly identical to arrays in C

— array variables can not be changed (only the contents can change)

addresses
0000
0004
0008

1054

1820
1824
1828

6344
6348

Memory

I6I

1054

6346

variable names

name

pS

int i = 6;

éﬁér name[] = "ecs316";
char ¢ = name[l];
short A[6];

for (i = 0; 1 < 6; it++)

A[i] = i*i;

int *p;
p = &i;

short *ps;
ps = &A[l];

Pointers (cont.)

=» Attention: dereferencing an uninitialized pointer can
have arbitrary effects (bad!) (including program crash).

=» Dereferencing a NULL pointer will crash the program
(better!)

 Advice:
— initialize with NULL, or some other value

— if not sure of value, check it before dereferencing
if (p == NULL) ({
printf ("ack! where's my pointer!'\n"); exit(1l);

}

Structures

» Like Java classes, but only member variables
— no static variables
— no functions

struct birthday ({ mybirthday Oxdeadbeef
char* name; 8 21
char month; 2002
short day;

int year;

};

struct birthday mybirthday = {"elliot",8,21,2002};
mybirthday.name[0] = 'E';
if (mybirthday.month == 6)

printf ("%$s is a Cancer\n", mybirthday.name) ;

Structures (cont.)

Members of a struct can be of any type that is already
defined.

Trick: 'struct X' can contain a pointer to 'struct X'
struct intlist {

int data;

struct intlist* next;

};
-> is syntax sugaring for dereference and take element:

struct intlist one = {10, NULL};

struct intlist two = {20, NULL};

struct intlist *head = &one;

one->next = &two;

(*one) .next = &two; // Does same thing as previous line

printf function

printf (formating string, paraml, ...)

Formating string: text to be displayed containing special markers
where values of parameters will be filled:

%d for int

%c for char

%f for £loat

%g for double

%s for null-terminated strings

Example:

int numstudents = 39;

printf ("The number of students in %s is %d.", name,

numstudents) ;

= printf will not complain about wrong types, number of params, etc.

enum: enumerated data-types

enum months {
JANUARY,
FEBRUARY,
MARCH,

};
« Each element of enum gets an integer value and can be used as an
integer.
enum signs {
CANCER = 6,
ARIES = 1,

Data-type Synonyms

 Syntax: typedef X ¥Y; // Y is a synonym for X

typedef int CornelllID;
CornellID me = 373333;

typedef struct elt* classlist; // bizarre but legal
struct elt {

CornelllID id;

char *name;

classlist next; // this is legal

Memory Allocation and Deallocation

Global variables: declared outside any
function.

Space allocated statically before program
execution.

Initialization statements (if any) done before
main() starts.

Space is deallocated when program finishes.
Name has to be unique for the whole program.

Memory Allocation and Deallocation

Local variables: declared in the body of a
function or inside a '{ }' block.

Space allocated when entering the function/
block.

Initialization (if any) before function/block starts.

Space automatically deallocated when function
returns or when block finishes

=>» Attention: referring to a local variable (by means of a
pointer for example) after the function returned will
cause unexpected behavior.

Names are visible only within the function/block

Memory Allocation and Deallocation

¢ Heap variables: memory has to be explicitly

— allocated: void* malloc (int) (similar to new in Java)
char *message = (char *)malloc (100);
intlist *mylist = (intlist *)malloc(sizeof (intlist));
mylist->data = 1;
mylist->next = (intlist *)malloc(sizeof(intlist));
mylist->next->data = 2;
mylist->next->next = NULL;

— deallocated: void free (void*)
free (msg); msg = NULL;
free (mylist->next);
free(mylist);
mylist = NULL;

Malloc/Free and pointers

=»You must malloc()
reading/writing from random addresses is bad.
=» You must malloc() the right amount:

reading/writing over the end of the space is bad
sizeof (struct birthday)
strlen(name)+l; // +1 is for the '\0'

=» You must free()
No garbage collector; if you don't have a free() for every
malloc(), you will eventually run out of memory.

=> ... but not too much
Freeing same memory twice is bad ("double free").

=» ...and don't use the memory after it is freed
set pointers to NULL after free.

Memory Allocation and Deallocation

struct birthday *clone student(struct birthday *b) ({
struct birthday *b2 = (struct birthday *)malloc(sizeof (struct birthday)) ;

b2->name = (char *)malloc(strlen(b->name)+1l); // or use strdup()
memcpy (b2->name, b->name, strlen (b->name)+1) ;

b2->day = b->day;

b2->year = b->year;

b2->month = b->month;

return b2;

void rename (struct birthday *b, char *new name) {
free (b->name) ; // danger: b->name must be a heap variable

b->name = strdup (new_name) ; // same as malloc(...) then memcpy(...)

Functions

» Can declare using a prototype, then
define the body of the function later

— |lets function be used before it is defined.

* Arguments passed by value
— Use pointers to pass by reference

* Return value passed by value
— Use malloc()'ed pointer to return by reference

Functions - Basic Example

#include <stdio.h>

int sum(int a, int b); // function declaration or

prototype

int main(int ac, char **av) {
int total = sum(2+2,5); // call function sum with
parameters 4 and 5
printf ("The total is %d\n", total);

/* definition of sum; has to match prototype */
int sum(int a, int b) {// arguments passed by wvalue

return (a+b); // return by value

Why pass via pointers?

void swap (int, int);
int main(int ac, char **av) {
int five = 5, ten = 10;
swap (five, ten);
printf ("five = %d and ten = %d4d", five, ten);
}
void swap (int nl, int n2) /* pass by value */
int temp = nl;
nl = n2;
n2 = temp;

$./swaptest
five = 5 and ten = 10 NOTHING HAPPENED

Why pass by reference”(cont.)

void swap(int *, int *);
int main(int ac, char **av) {
int five = 5, ten = 10;
swap (&five, &ten);
printf ("five = %d and ten = %d4d", five, ten);
}
void swap(int *pl, int *p2) /* pass by value */
int temp = *pl;
*pl = *p2;
*p2 = temp;

$./swaptest
five = 10 and ten = 5

Pointer to Function

void kill(int d) { /* do something */ ... }
void eat(int d) { /* do something else */ ... }
typedef void (*simple function) (int);

// simple function is synonym for a pointer to

// a function returning void and taking an int

void do_stuff(simple function £, int param) ({

f (param); /* call function f with param */

int main(int ac, char **av) {
kill (3);
simple function g = (ac == 1 ? eat : kill);
do stuff(g, 8);

The Preprocessor

* File copy-and-paste

/* include standard library declaration */
#include <stdio.h>

/* include custom declarations */

#include "myheader.h"

 Text substitution

#define DEBUG 0
#define MAX LIST LENGTH 100
if (DEBUG)
printf ("Max length of list is %d.", MAX LIST LENGTH) ;

« Conditional compilation

#ifdef DEBUG

printf ("DEBUG: line " LINE " has been reached.");
#endif

Programs with Multiple Files

Header file: my_program.h:

— function prototypes

— global variable prototypes: extern int x;
Program files: one.c, two.c, ...

— each file uses #include "my program.h"

— one of them defines main()
— each prototype defined in exactly one of the files

compiler produces one.o, two.o, ...
(or one.obj, two.obj on windows)

compiler then links together to form program

