Atomic Instructions

Hakim Weatherspoon
CS 3410, Spring 2011

Computer Science
Cornell University

P&H Chapter 2.11

Announcements

PA4 due next th
* Workin pairs

 Will not be able to use slip days

* Need to schedule time for presentation May 16, 17, or 18

e Signup Wr class (in ficﬂt)

Announcements

Prelim?2 results
* Mean 56.4 + 16.3 (median 57.8), Max 95.5
* Pickup in Homework pass back room (Upson 360)

Prelim2 Scores

1 AVLY 20 35 HOYS G040 Z

Goals for Today

Finish Synchronization

Threads and processes

Critical sections, race conditions, and mutexes

Atomic Instructions

 _HW support for synchronization

Using sync primitives to build concurrency-safe data
structures

Cache coherency causes problems
Locks + barriers

Language level synchronization

Mutexes

Q: How to implement critical section in code?
A: Lots of approaches....
Mutual Exclusion Lock (mutex)

lock(m): wait till it becomes free, then lock it

unlock(m): unlock it (ock(».>
safe_increment() { (o ﬂ/ L (HE)
pthread_mutex_lock(m); [AM ¥
hits = hits + 1; Sew 31,4/ f)
rthread_mutex unlock(m) “"/or/(m)

Synchronization

Synchronization techniques
clever code

* must work despite adversarial scheduler/interrupts
e used by: hackers

* also: noobs

disable interrupts

* used by: exception handler, scheduler, device drivers, ...
disable preemption
* dangerous for user code, but okay for some kernel code

mutual exclusion locks (mutex)

e general purpose, except for some interrupt-related cases

Hardware Support for Synchronization

Atomic Test and Set

Mutex implementation
* Suppose hardware has atomic test-and-set

Hardware atomic equivalent of...
int test and set(int *m) {
w,;\(/ old = *m; | (<
o *m = 1; | Sw/

;0
r~ return old;
}

Using test-and-set for mutual exclusion

Use test-and-set to implement mutex / spinlock / crit. sec.
int m = @;j /”'4‘/7[?)(Y, |

()
(5{oep O) .
wfile (test _and set(&m)) { /* skip */ }; (oc‘k

t @ ZOC k (Qﬂ/zaﬁ
. ah/oc/(; 56 (n < re ’
N~

Spin waiting

Also called: spinlock, busy waiting, spin waiting, ...

e Efficient if wait is short

e Wasteful if wait is long

Possible heuristic:
* spin for time proportional to expected wait time
* |f time runs out, context-switch to some other thread

10

Alternative Atomic Instructions

Other atomic hardware primitives
- test and set (x86)

- atomic increment (x86)
- bus lock prefix (x86)

ery L)ff)?/?§,vu<
il - proc; g— 78 QyC/Q

11

Alternative Atomic Instructions

Other atomic hardware primitives

- test and set (x86)

- atomic increment (x86)

- bus lock prefix (x86)

- compare and exchange (x86, ARM deprecated)

- linked load / store conditional
(MIPS, ARM, PowerPC, DEC Alpha, ...)

12

mutex from LL and SC

Linked load / Store Conditional

(OC/’G?/ ;/
U o fred = O /XC‘O

mutex_ lock(int *m) {

again: <= /‘(
LL t0, [p(a0)) — Cat**7 J
BNE t0, zero, again /#(ﬂa(‘m/ockci)

ADDI t0, t0, 1 <c

—_ Széfq Nl 0V€/w/q/@5
SC to, ©(a0) | Sre req (6€0)
BEQ tO, zero, agalin — oy | \Qrcoss”

} Q‘”[//

Using synchronization primitives to build
concurrency-safe datastructures

14

Broken invariants

Access to shared data must be synchronized

dal:nforce datastructure invariants
lnvarilant
data is in A[h . ::::::)
char A[10 A U/ﬁ/;/;/;// ;
int h = 9, t = 0; ‘%?5 /éfx A
A

// writer: add to list tail // reader: take from list head

void put(char c) { char get() { (}m/éﬁ>
Al[t] = c; while (h == t) { };
t++; char ¢ = A[h];
} h++;
return c;

15

Protecting an invariant

// invariant: (protected by m)
// data is in A[h .. t-1]

pthread mutex_t *m = pthread mutex create(); [SSw ey
;)
c.:har* A[100]; C an { La,
int h =0, t = 9; A, (e 4&@(/'4/
Cock
// writer: add to list tail // reader: take from list head
void put(char c) { char get() {
pthread_mutex_lock(m); pthread_mutex_lock(m);
A[t] = c; char ¢ = A[h]; "
t4+; 6:6—#/)}0’\— h++; 4""(4"‘")/0%
pthread_mutex_unlock(m); pthread_mutex_unlock(m);
} return c;
}

Rule of thumb: all updates that can affect
invariant become critical sections

16

Guidelines for successful mutexing

Insufficient locking can cause races
e Skimping on mutexes? Just say no!

Poorly designed locking can cause deadlock

P1: lock(ml);U OPZ lock(m2); O C/Cﬁf s
lock(m2); Sé&4 lock(mil); Sé&q T

* know why you are using mutexes!
e acquire locks in a consistent order to avoid cycles

 use lock/unlock like braces (match them lexically)
— lock(&m); ...; unlock(&m)
— watch out for return, goto, and function calls!
— watch out for exception/error conditions!

17

Cache Coherency
causes yet more trouble

18

Remember: Cache Coherence

Recall: Cache coherence defined...
Informal: Reads return most recently written value
Formal: For concurrent processes P, and P,

. before P reads X (with no intervening writes)
=> read returns written value

* P, writes X before P, reads X
=> read returns written value

* P, writes X and P, writes X
=> all processors see writes in the same order

— all se same final value for X

19

Relaxed consistency implications

ldeal case: sequential consistency
e Globally: writes appear in interleaved order
* Locally: other core’s writes show up in program order

In practice: not so much...
* write-back caches =2 sequential consistency is tricky
e writes appear in semi-random order
* locks alone don’t help
- T

* MIPS has sequential consistency; Intel does not

20

Acquire/release

Memory Barriers and Release Consistency
e Less strict than sequential consistency; easier to build
One protocol:

* Acquire: lock, and force subsequent accesses after
e Release: unlock, and force previous accesses before

P . P2:

1: .
acquire(m); sacquire(m);
Alt] = c; Alt] = c;

Z:((t++; /t++3
release(m) @ unlock(m);

Moral: can’t rely on sequential consistency
(so use synchronization libraries)

21

Are Locks + Barriers enough?

Py

Beyond mutexes

Writers must check for full buffer
& Readers must check if for empty buffer

* ideal: don’t busy wait... go to sleep instead

char get() {
acquire(L);
(ery%' char ¢ = A[h];
WECE bt
release(L);
return c;

¥

23

Beyond mutexes

Writers must check for full buffer
& Readers must check if for empty buffer

* ideal: don’t busy wait... go to sleep instead

char get() {

oA 20 [uhile (h == t) _£73;

C Yec f acquir*e(L),
char ¢ = A[h];
h++;
release(L);
return c;

¥

Canlt s fo%@‘(ifﬁ
(enp{lﬂ)

/‘(‘w/t '(0 CAQL/T
(/'//\(({ 40 /U(m
(00 ((J
L%té— é’
w al 0\/ /

h (A //Cj /0(/\

24

Beyond mutexes

Writers must check for full buffer
& Readers must check if for empty buffer

* ideal: don’t busy wait... go to sleep instead
char get() {
acquire(L);
while (h == t) { };
char ¢ = A[h];
h++;
release(L);
return c;

25

Beyond mutexes

Writers must check for full buffer
& Readers must check if for empty buffer

* ideal char get() {
do {
acquire(L);
empty = (h == t);
if (lempty) {
c = Alh];
h++;
}
release(L);
} while (empty);
return c;

¥

26

Language-level Synchronization

e

Condition variables

Use [Hoare] a condition variable to wait for a

condition to become true (without holding lock!)

wait(m, c) :

e ato
* Wad

signa

mically release m and sleep, waiting for condition c
ke up holding m sometime after c was signaled

(c) : wake up one thread waiting on ¢

broac

cast(c) : wake up all threads waiting on ¢

POSIX (e.g., Linux): pthread_cond_wait,

pth

read_cond_signal, pthread _cond broadcast

28

Usmg a condition variable

wait(m, ¢): release m, sleep until ¢, wake up holding m
signal(c) : wake up one thread waiting on c

Cond_t @...; L char get() L{ L'/)//(& \
cond_t tnot empty - (jI——E‘*‘)
mutex_t >I<m = ..., o¢ (4):> /
while (t == h)

Cjiij%iﬁﬁ:?ar c_;} wait(m, not _empty);-

ock(m k(w,(le fa/(> \Lchar‘ c = A[h];
[Twhile ((t-h) % n == 1) = (h+1) % n;—

wait(m, not full);

g - g unlock(m);
i L (m);)

Alt] = ignal(not full)
Y signal(no ;
= (t+1) % n; — -enaz T
unlock(m);> return c;

signal(not_empty); }
}

29

Usmg a condition variable

wait(m, ¢): release m, sleep until ¢, wake up holding m
signal(c) : wake up one thread waiting on c

cond t {EEE’;EEE%:}...; l char get() k
cond_t tnot_empty cees <:15EEZE§3>

mutex_ t *m = [..; .
while (t == h)
void put(char c) { o wait(m, not_empty);
lock(m); char ¢ = A[h];
while ((t-h) % n == = (h+1) % n;

wait(m, not_full); §§\§§\g unlock(m)
A[t] = c; 5
t = (t+1) % n; 1gna£}not _full);

unlock(m); ‘return c;
signal(not_empty); }

30

Monitors

A Monitor is a concurrency-safe datastructure,
with...

* one mutex
e some condition variables
* some operations

All operations on monitor acquire/release mutex
* one thread in the monitor at a time

Ring buffer was a monitor
Java, C#, etc., have built-in support for monitors

31

Java concurrency

Java objects can be monitors
* “synchronized” keyword locks/releases the mutex

* Has one (!) builtin condition variable
— o.wait() = wait(o, o)
— o.notify() = signal(o)
— o.notifyAll() = broadcast(o)

* Java wait() can be called even when mutex is not held.
Mutex not held when awoken by signal(). Useful?

o’(d&j AN

32

More synchronization mechanisms

Lots of synchronization variations...
(can implement with mutex and condition vars.)

Reader/writer locks
* Any number of threads can hold a read lock

* Only one thread can hold the writer lock

Semaphores

e N threads can hold lock at the same time

Message-passing, sockets, queues, ring buffers, ...

* transfer data and synchronize

33

Summary

Hardware Primitives: test-and-set, LL/SC, barrier, ...
... used to build ...

Synchronization primitives: mutex, semaphore, ...
... used to build ...

Language Constructs: monitors, signals, ...

34

