IT TOOK A LOT OF WORK, BUT THIS
LATEST LINUX PATZH ENABLES SUPPORT
FOR MACHINES WITH Y,096 CPVs,

UP FROM THE OLp LIMIT OF 1,02Y.

/ DO YOU HAVE SUPPORT FOR SMOOTH
FULL-SOREEN F(ASH VIDED YET?

NO, BUTWHO USES 74#A77)

\O O

xkcd/619

Multicore & Parallel Processing

Guest Lecture: Kevin Walsh
CS 3410, Spring 2011
Computer Science
Cornell University

Execution time after improvement =

affected execution time

amount of improvement

+ execution time unaffected

Q: How to improve system performance?
9

9

Recall: Amdahl’s Law

Solution: Parallelism

Instruction-Level Parallelism (ILP)

Pipelining: execute multiple instructions in parallel
Q: How to get more instruction level parallelism?

A: Deeper pipeline

Pipeline depth limited by...

— max clock speed (less work per stage = shorter clock cycle)

— min unit of work
— dependencies, hazards / forwarding logic

Instruction-Level Parallelism (ILP)

Pipelining: execute multiple instructions in parallel
Q: How to get more instruction level parallelism?
A: Multiple issue pipeline

— Start multiple instructions per clock cycle in duplicate stages

Static Multiple Issue

Static Multiple Issue
a.k.a. Very Long Instruction Word (VLIW)

Compiler groups instructions to be issued together
* Packages them into “issue slots”

Q: How does HW detect and resolve hazards?
A: It doesn’t.

- Simple HW, assumes compiler avoids hazards

Example: Static Dual-Issue 32-bit MIPS

* Instructions come in pairs (64-bit aligned)
— One ALU/branch instruction (or nop)
— One load/store instruction (or nop)

Compiler scheduling for dual-issue MIPS...

TOP:

TOP:

lw $to,
1w $t1,
addu $to,
addu $t1,
sw $to,
sw $t1,
addi $s1,
bne $s1,
ALU/branch
nop
nop
addu $to,
addu $t1,
addi $s1,
bne $s1,

$to,
$t1,
$s1, +8
$s3,

0($s1)
4($s1)
$t0, $s2
$t1, $s2
0($s1)
4($s1)
$s1, +8
$s3, TOP

slot

$s2
$s2

TOP

$t0 = A[i]

$t1l = A[i+1]

add $s2

add $s2

store A[1i]

store A[i+1]

increment pointer

continue if $sl!=end
Load/store slot cycle
Iw $t0, 0($s1) 1
Iw $t1, 4($s1) 2
nop 3
sw $to, 0(%$s1) 4
sw $t1, 4($s1) 5
nop 6

Scheduling Example

Limits of Static Scheduling

Compiler scheduling for dual-issue MIPS...
lw $to, 0($s1) # load A

addi $to, $to, +1 # increment A

sw $to, 0($s1) # store A

lw $to, 0($s2) # load B

addi $to, $to, +1 # increment B

sw $to, 0($s2) # store B
ALU/branch slot Load/store slot cycle
nop lw $to, 0($sl) 1
nop nop 2
addi $to, $to, +1 nop 3
nop sw $to, 0(%$s1) 4
nop lw $to, 0($s2) 5
nop nop 6
addi $to, $to, +1 nop 7
nop sw $to, 0(%$s2) 8

Dynamic Multiple Issue

Dynamic Multiple Issue

a.k.a. SuperScalar Processor (c.f. Intel)

* CPU examines instruction stream and chooses multiple
instructions to issue each cycle

 Compiler can help by reordering instructions....
... but CPU is responsible for resolving hazards

Even better: Speculation/Out-of-order Execution
e Execute instructions as early as possible
* Aggressive register renaming
e Guess results of branches, loads, etc.
Roll back if guesses were wrong
 Don’t commit results until all previous insts. are retired

10

Does Multiple Issue Work?

Q: Does multiple issue / ILP work?
A: Kind of... but not as much as we’d like
Limiting factors?

* Programs dependencies

* Hard to detect dependencies =2 be conservative
— e.g. Pointer Aliasing: A[0] += 1; B[0] *= 2;
Hard to expose parallelism

— Can only issue a few instructions ahead of PC

Structural limits
— Memory delays and limited bandwidth

Hard to keep pipelines full

11

Q: Does multiple issue / ILP cost much?

A: Yes.

Power Efficiency

— Dynamic issue and speculation requires power

CPU Year Clock Pipeline | Issue | Out-of-order/| Cores | Power
Rate Stages | width | Speculation
1486 1989 | 25MHz 5 1 No 1 5W
Pentium 1993 66MHz 5 2 No 1 10W
Pentium Pro | 1997 | 200MHz 10 3 Yes 1 29W
P4 Willamette | 2001 | 2000MHz 22 3 Yes 1 75W
UltraSparc Il | 2003 | 1950MHz 14 4 No 1 90W
P4 Prescott 2004 | 3600MHz 31 3 Yes 1 103W
Core 2006 | 2930MHz 14 4 Yes 2 75W
UltraSparc T1 | 2005 | 1200MHz 6 1 No 8 70W

- Multiple simpler cores may be better?

12

Transistor count

2,000,000,000 — [Dual-core Itanium 2. sessee e

1 .000.000,000 1 —D‘? f‘:b . ® VT

Hankm 2 with 508 cache @ ’ - w
one 2 Quad /

e 2 Duo

3
,I
o r

100,000,000

’II.EZLIII
Curve shows ‘Moore's Law’; o
10,000,000 — transistor count doubling 7 gKs oFll

Pl
avery two years

1,000,000 — lbentlun{

100,000

’
-
....
’

10,000 —
230049_04 &o@
| | |

1 971 1 980 1990 2000 2008

Why Multicore?

Moore’s law
* Alaw about transistors
* Smaller means more transistors per die

* And smaller means faster too

But: Power consumption growing too...

14

Power Limits

N

‘-
c
o

~—
2

—_—

—_—
<

L
Pentium lll ® processor
Pentium Il ® processor
Pentium Pro ® processor
Pentium ® processor
& 1486

1.Sp 1p D7 O5p D35S 0.25u 0.18pu 0.13u 0.1p 04074

Power = capacitance * voltage? * frequency
In practice: Power ~ voltage3

Reducing voltage helps (a lot)
... S0 does reducing clock speed
Better cooling helps

The power wall
* We can’t reduce voltage further

e We can’t remove more heat

16

Performance
Power

Performance
Power

Performance
Power

1.2x

1.0x
1.0x

1.6x

1.02x

1.7x

Single-Core
Overclocked +20%

Single-Core

Dual-Core
Underclocked -20%

17

Inside the Processor

AMD Barcelona Quad-Core: 4 processor cores

HT PHY, link 1 [Slow I/O[Fuses

128-bit FPU

[aV]
= = Load/| L1 Data
=1 =| 2MB Store | Cache 512kB
Z | Shared Exeout o L2 Core 2
Z| L3 xecution L2 | cache
| Cache | Fetch/
Decode/ | L1 Instr
: Branch | Cache D
e D
g — Northbridge R
:‘\ -
P
lll "'IH ; H
Y
—+n i t
ot o m
X
% Core 4 Core 3
o
[
T

HT PHY, link 4 |Slow |/0|Fuses|

18

Inside the Processor

Intel Nehalem Hex-Core

-

BRI e
‘Memoty Controller

o
(=}
aw)
=

(4%
o
—

o oo on B s S B n

==Shared:3: 2 EXeciitio

UR ER B3 B3)] t on po AR p

r

i MiSE

»YYTY.
dddds,!

! |3 30
reen prew pese kvaw semw mEew pres srew

19

Hyperthreading

Multi-Core vs. Multi-Issue vs. HT

Programs:
Num. Pipelines:
Pipeline Width:

Hyperthreads (Intel)
* |llusion of multiple cores on a single core
e Easy to keep HT pipelines full + share functional units

20

Example: All of the above

_
i @ @ @3- !- ¢

|

Memory

21

Intel” Scalable Memony Buffer

-
-

Parallel Programming

Q: So lets just all use multicore from now on!
A: Software must be written as parallel program

Multicore difficulties
* Partitioning work
* Coordination & synchronization
 Communications overhead
* Balancing load over cores
* How do you write parallel programs?

— ... without knowing exact underlying architecture?

22

Work Partitioning

Partition work so all cores have something to do

23

Load Balancing

Load Balancing
Need to partition so all cores are actually working

24

Amdahl’s Law

If tasks have a serial part and a parallel part...
Example:

step 1: divide input data into n pieces

step 2: do work on each piece

step 3: combine all results

Recall: Amdahl’s Law
As number of cores increases ...

* time to execute parallel part?

* time to execute serial part?

25

Amdahl’s Law

26

Parallel Programming

Q: So lets just all use multicore from now on!
A: Software must be written as parallel program

Multicore difficulties
* Partitioning work
* Coordination & synchronization
 Communications overhead
* Balancing load over cores
* How do you write parallel programs?

— ... without knowing exact underlying architecture?

27

