Virtual Memory 2

Hakim Weatherspoon
CS 3410, Spring 2011

Computer Science
Cornell University

P & H Chapter 5.4-5

Announcements

PA3 available. Due Tuesday, April 19t

* Work with pairs

* Be responsible with new knowledge

* Scheduling a games night, possibly Friday, April 22"

Next five weeks

* One homeworks and two projects
* Prelim2 will be Thursday, April 28t
 PA4 will be final project (no final exam)

Goals for Today

Virtual Memory

Address Translation

 Pages, page tables, and memory mgmt unit
Paging

Role of Operating System

 Context switches, working set, shared memory

Performance

e Howslowis it

e Making virtual memory fast
 Translation lookaside buffer (TLB)

Virtual Memory Meets Caching

Address Translation
Pages, Page Tables, and
the Memory Management Unit (MMU)

Address Translation

Attempt #1: How does MMU translate addresses?
paddr = PageTable[vaddr];
Granularity?

e Per word... {00 QKﬁPﬁS/ye (OV()//&?/(/

a
+ Per block... =4GR
e Variable..... . L/&) u/dra(_g B
Typ|ca| 2 — bD/(//Oﬂ Qn{(y /Ct/€
» 4KB - 16KB pages Fer proces

e 4MB — 256MB jumbo pageséo’)) 32 1 20
}IL_ L/ /(6) 2 ‘2 'Q
Y & Lpp

CIW™

Attempt #1: For any access to virtual address:

Address Translation

Virtual page number Page Offset
M&/e)z* <v 1L
[Lookup in PageTable]
Physical page number Page offset

* Calculate virtual page number and page offset

* Lookup physical page number at PageTable[vpn]

e Calculate physical address a@

=

paddr

Simple Pa ggeTabIe

Read Mem[0x0020163 SDVq/Jr
OxC20A3000

Data CPU .

P7 é)/i F;céwo&ﬂ/
Q: Where to store page tables? ’\Xw
A: In memory, of rse...
Special@%‘w
OHIA3PE,

(CR3:PTBR on x oundy
X
(CopO:ContextRegister on MIPS)

VP = [V ADDR/ Py s2
_ (/Aé@))«Q(qrbD

0x10045000

Ox H0)
AW
g 12 0x00000000
P7- (2K'L¥ :36%Q90 7L~()Xﬁb:5§;

Summary

Physical Page
Number
0x10045 <«

AP E | —
»-‘\

PTOR 0xC20A3

0x4123B &
0x00000 &
0x20340 -

O AFCPC 557 2
76 R
vpn pgoff w
vaddr PTBR

Page Size Example

Overhead for VM Attempt #1 (example)

Virtual address space (for each process):
* total memory: 232 bytes = 4GB
* page size: 212 bytes = 4KB o 20 4.& ,
* entries in PageTable? 9 ¢ éﬁj/ﬂs “9)
* size of PaggeTabIe?eu;[l o ,,17/ S = 2122
Physical address spacizf)p,,.?ﬂ) "# "//Vl;
 total memory: 2%° bytes = 512MB

e overhead for 10 processes? Lf O ME Jver /(4/

/’C’q,~ <j /ZO@/

Invalid Pages

Physical Page

V Number
0
1 0x10045
0
0
1 0xC20A3
1 0x4123B
1 0)(0]e0]0]0)
0

Cool Trick #1: Don’t map all pages

Need valid bit for each
page table entry

Q: Why?

0xC20A3000

0x90000000

0x4123B000

0x10045000

0x00000000

10

Assume mos ¥
How to translate addresses? Multi-level PageTable

10 bits

10 bits

10 bits 2

(

eyond Flat Page Tables
of PageTableis empty

vaddr

1§ PTEntrZ

PDEntry

PTBR >

Page
Directory

* x86 does exactly this

11

Page Permissions

Physical Page

V RW X Number
0
| 0x10045
0
0
1 0xC20A3
| 0x4123B
| 0x00000
0
Cool Trick #2: Page permissions!

Keep R, W, X permission bits for
each page table entr
pag ca:{ prg_oﬂﬁ

Q: Why?

/(OL a /‘a(/wf

0xC20A3000

0x90000000

0x4123B000

0x10045000

0x00000000

12

RW X

Aliasing
Physical Page
Number

~OxC20A3 O

\/

C_0xC20A3 >

O0x4123B

0x00000

V
0
1
0
0
-1
1
1
0

Cool Trick #3: Aliasing

Map the same physical page
at several virtual addresses

Q: Why?

0xC20A3000

0x90000000

0x4123B000

0x10045000

0x00000000

13

Paging

14

Paging
Can we run process larger than physical memory?

e The “virtual” in “virtual memory”

View memory as a “cache” for secondary storage
 Swap memory pages out to disk when not in use

* Page them back in when needed

Assumes Temporal/Spatial Locality

e Pages used recently most likely to be used again soon

15

Paging

Physical Page

\(; RW X 6) I\.lumbl. elr 0xC20A3000
1 0| 0x10045
5 po——
0 SrroaTid™ 0x90000000
< 0 O] disk sector 200‘> 0x4133B000
0] Ofdisk sector 25—
1 1) ox00000
0 Anvatid— 0x10045000
Cool Trick #4: Paging/Swapping 0x00000000

Need more bits: >
. 200
Dirty, RecentlyUsed, ... =

Role of the Operating System
Context switches, working set,
shared memory

17

sbrk

Suppose Firefox needs a new page of memory
(1) Invoke the Operating System

void *sbrk(int nbytes); ———’W
(2) OS finds a free page of physical memory

 clear the page (fill with zeros)

* add a new entry to Firefox’s PageT

/)70’7{_—7\[,77

18

Context Switch

Suppose Firefox is idle, but Skype wants to run

(1) Firefox invokes the Operating System
int sleep(int nseconds); — 9'ved 4, CRY
(2) OS saves Firefox’s registers, load skype’s
e (more on this later)
(3) OS changes the CPU’s Page Table Base Register
* Cop0:ContextRegister / CR3:PDBR

(4) OS returns to Skype

19

Shared Memory

Suppose Firefox and Skype want to share data

(1) OS finds a free page of physical memory
 clear the page (fill with zeros)

* add a new entry to Firefox’s PageTable ‘PT

e add a new entry to Skype’s PageTable 7 F
— can be same or _dlfferent vaddr

— can be same or different page permissions
C

T
Pls Co Same ShypL

%95 P«j(

20

Multiplexing

Suppose Skype needs a new page of memory, but Firefox
is hogging it all

(1) Invoke the Operating System
sbrk(int nbytes);

(2) OS can’t find a free page of physical memory
* Pick a page from Firefox instead (or other process)

(3) If page table entry has dirty bit set...
* Copy the page contents to disk

(4) Mark Firefox’s page table entry as endiskZ
* Firefox will fault if it tries to access the
(5) Give the@y freed physical page to Skype

* clear the page (fill with zeros)
* add a new entry to Skyps’s PageTable

21

Paging Assumption 1

OS multiplexes physical memory among processes

* assumption # 1:
processes use only a few pages at a time

* working set = set of process’s recently actively pages

H recent
accesses

0x00000000 € ° € ¢=/Hx90000000

"?PM@

Py

P1

Reasons for Thrashing

working set

swapped

mem

disk

Q: What if working set is too large?

Case 1: Single process using too many pages

k/«d/\ﬂ
working set swapped
mem disk
, o6
Case 2: Too many processes ﬂ(ej,qe Co ‘“ﬂ
WS || WS || WS || WS WS WS ((()
mem disk

23

Thrashing

Thrashing b/c working set of process (or processes)

greater than physical memory available
— Firefox steals page from Skype
— Skype steals page from Firefox

* |/O (disk activity) at 100% utilization

— But no useful work is getting done

|deal: Size of disk, speed of memory (or cache)
Non-ideal: Speed of disk

24

Paging Assumption 2

OS multiplexes physical memory among processes
* assumption # 2:

recent accesses predijst future accesses
e working set usually.changes slowly gver time

working set

time —

25

More Thrashing
Q: What if working set changes rapidly or

unpredictably?

- .I'-I'.'_-'". l.l. :'.-
.:ll'.l-'__- --il
F.lll e g " B

working set

time —

A: Thrashing b/c recent accesses don’t predict
future accesses

26

Preventing Thrashing

How to prevent thrashing?
e User: Don’t run too many apps
* Process: efficient and predictable mem usage

e OS: Don’t over-commit memory, memory-aware
scheduling policies, etc.

27

Performance

28

Performance

Virtual Memory Summary

PageTable for each process:
 4MB contiguous in physical memory, or multi-level, ...

* every load/store ¢ranslatechto physical addresses
= . ~
(* page table miss =

load the swapped-out page and retry instruction,
or kill program if the page really doesn’t exist,
or tell the program it made a mistake

29

Page Table Review

x86 Example: 2 level page tables, assum
32 bit vaddr, 32 bit paddr //PD_E\,DTE\\

4k PDir, 4k PTabIes 4k Pages TS

-
O
m

PTBR)
\? b,€s |2 6. €5 \ PDE C_PTE N
(<)@ PTE) PDE PTE |
Q:How many bitsforrapage number? \[_PTE

A: 20

Q: What is stored in each PageTableEntry?
A: ppn, valid/dirty/r/w/x/...

Q: What is stored in each PageDirEntry?
A: ppn, valid/?/...

Q: How many entries in a PageDirectory?
A: 1024 four-byte PDEs

Q: How many entires in each PageTable?
A: 1024 four-byte PTEs

J

30

Page Table Example

x86 Example: 2 level page tables, assume...
32 bit vaddr, 32 bit paddr — PTE

4k PDir, 4k PTables, 4k Pages =

-

PTBR :BDE L
PTBR = Qx10005000 (physical) /2‘ ey

| PDE PTE

Write to virtual addres@92a4@.. @ 2 PTE | ()2
Q: Byte offset in page? Y42 PTIndex? * ¢ PR Index?, «

[
(1) PageDir is at 0x10005000, s0... Ol 0991 1v1000 1070
Fetch PDE from physical address Ox1005000+4*PBI 4
* suppose we get {0x12345, v=1, ...} //Q 6

(2) PageTable is at 0x12345000, so...
Fetch PTE from physical address Ox12345000+4*P{TI
e suppose we get {0x14817, Vfl,\d=0, r=1, w=1, x=0, ...} [2e

(3) Page is at 0x14817000, so...
Write data to physical addres Ox1481@

Also: update PTE with d=1 31

Performance

Virtual Memory Summary
PageTable for each process:

 4MB contiguous in physical memory, or multi-level, ...
* every load/store translated to physical addresses

e page table miss: load a swapped-out page and retry
instruction, or kill program

Performance?

* terrible: memory is already slow
translation makes it slower

Solution?

* A cache, of course

32

Making Virtual Memory Fast
The Translation Lookaside Buffer (TLB)

33

Translation Lookaside Buffer (TLB)

Hardware Translation Lookaside Buffer (TLB)

A small, very fast cache of recent address mappings
* TLB hit: avoids PageTable lookup
* TLB miss: do PageTable lookup, cache result for later

34

TLB Dlagram

\

VRWXD tag
VRWXD
0 invalid | —"
v — 1 o] o |
0] invalid))
: : 0] invalid
0 invalid : :
- - 0 invalid
0 invalid 1 0 . S
(1) inv;\l\lkt 0 0L A\ /
- 1 1| &\
0 invalid \
1 Q
0 invalm\

35

A TLB in the Memory Hierarchy

TLB

CPU Lookup Cache

PageTable
Lookup

(1) Check TLB for vaddr (~ 1 cycle)

| (o

(2) TLB Hit

e compute paddr, send to cache

(2) TLB Miss: traverse PageTables for vaddr

(3a) PageTable has valid entry for in-memory page

* Load PageTable entry into TLB; try again (tens of cycles)

(3b) PageTable has entry for swapped-out (on-disk) page

* Page Fault: load from disk, fix PageTable, try again (millions of cycles)

(3c) PageTable has invalid entry

e Page Fault: kill process

36

TLB Coherency

TLB Coherency: What can go wrong?
A: PageTable or PageDir contents change

* swapping/paging activity, new shared pages, ...

A: Page Table Base Register changes
e context switch between processes

37

Translation Lookaside Buffers (TLBs)

When PTE changes, PDE changes, PTBR changes....

Full Transparency: TLB coherency in hardware

* Flush TLB whenever PTBR register changes
[easy — why?]

* |Invalidate entries whenever PTE or PDE changes
[hard — why?]

TLB coherency in software

If TLB has a no-write policy...
e OS invalidates entry after OS modifies page tables
* OS flushes TLB whenever OS does context switch

38

TLB Parameters

TLB parameters (typical)
e very small (64 — 256 entries), so very fast
 fully associative, or at least set associative
* tiny block size: why?

Intel Nehalem TLB (example)
* 128-entry L1 Instruction TLB, 4-way LRU
* 64-entry L1 Data TLB, 4-way LRU
e 512-entry L2 Unified TLB, 4-way LRU

39

Virtual Memory meets Caching
Virtually vs. physically addressed caches
Virtually vs. physically tagged caches

40

CPU

Virtually Addressed Caching

Q: Can we remove the TLB from the critical path?
A: Virtually-Addressed Caches

TLB
Lookup Mem
Virtually PageTable
Addressed Lookup
Cache

41

Virtual vs. Physical Caches

addr
N I: Cache |
MMU
cPU [sRam [Memory
_ DRAM
Cache works on physical addresses
addr
! Cache |==—> MMU I:
M
CPU m SRAM P> emory
DRAM
Cache works on virtual addresses

Q: What happens on context switch?
Q: What about virtual memory aliasing?

Q: So what’s wrong with physically addressed caches?

42

Indexing vs. Tagging

Physically-Addressed Cache

Virtually-Addressed Cache
Virtually-Indexed, Virtually Tagged Cache

 fast: start TLB lookup before cache lookup finishes
* PageTable changes (paging, context switch, etc.)

need to purge stale cache lines (how?)
* Synonyms (two virtual mappings for one physical page)
—> could end up in cache twice (very bad!)
Virtually-Indexed, Physically Tagged Cache
e ~fast: TLB lookup in parallel with cache lookup
* PageTable changes = no problem: phys. tag mismatch
* Synonyms -2 search and evict lines with same phys. tag

43

first

Typical Cache Setup

CPU addr

L1 Cache)
e —

SRAM data

MMU

TLB SRAM

——
>

L2 Cache
SRAM

ﬁ
)

Typical L1: On-c
Typical L2: On-c

Typical L3: On-c

NIp ...

nip physically addressed

Memory
DRAM

nip virtually addressed, physically tagged

44

Caches/TLBs/VM

Caches, Virtual Memory, & TLBs
Where can block be placed?
* Direct, n-way, fully associative

What block is replaced on miss?
 LRU, Random, LFU, ...

How are writes handled?
* No-write (w/ or w/o automatic invalidation)
* Write-back (fast, block at time)
* Write-through (simple, reason about consistency)

45

Summary of Cache Design Parameters

L1 Paged Memory |TLB
Size 1/4k to 4k |16k to 1M 64 to 4k
(blocks)
Size 16t0 64 |1Mto 4G 2t0 16
(kB)
Block 16-64 4k to 64k 4-32
size (B)
Miss 2%-5% [10*to 10°% 0.01% to 2%
rates
Miss 10-25 10M-100M 100-1000
penalty

46

