Virtual Memory 1

Hakim Weatherspoon
CS 3410, Spring 2011

Computer Science
Cornell University

P & H Chapter 5.4 (up to TLBs)

Announcements

HW3 available due today Tuesday
* HWS3 has been updated. Use updated version.
 Work with alone

* Be responsible with new knowledge

PA3 available later today or by tomorrow
* Work in pairs

Next five weeks

* One homeworks and two projects
* Prelim2 will be Thursday, April 28
* PA4 will be final project (no final exam)

Goals for Today

Title says Virtual Memory, but really finish caches:
writes

Introduce idea of Virtual Memory

Cache Design

Need to determine parameters:

Cache size

Block size (aka line size)

Number of ways of set-associativity (1, N, =)
Eviction policy

Number of levels of caching, parameters for each
Separate |I-cache from D-cache, or Unified cache
Prefetching policies / instructions

Write policy

> dmidecode -t cache A Real Example

Cache Information Dual-core 3.16GHz Intel
Configuration: Enabled, Not Socketed, Level 1 .
Operational Mode: Write Back (purChased N 2009)

Installed Size: 128 KB

Error Correction Type: None
Cache Information

Configuration: Enabled, Not Socketed, Level 2

Operational Mode: Varies With Memory Address

Installed Size: 6144 KB

Error Correction Type: Single-bit ECC
> c¢d /sys/devices/system/cpu/cpu@; grep cache/*/*
cache/index@/level:1
cache/index@/type:Data
cache/index@/ways of associativity:8
cache/index@/number_of sets:64
cache/index@/coherency line size:64
cache/index0@/size:32K
cache/index1/level:1
cache/index1/type:Instruction
cache/index1/ways_of_associativity:8
cache/index1/number_of_ sets:64
cache/index1/coherency_line size:64
cache/index1/size:32K
cache/index2/level:2
cache/index2/type:Unified
cache/index2/shared_cpu_list:0-1
cache/index2/ways_of_associativity:24
cache/index2/number_of sets:4096
cache/index2/coherency line size:64 5
cache/index2/size:6144K

A Real Example
Dual-core 3.16GHz Intel

Dual 32K L1 Instruction caches (purchased in 2009)
* 8-way set associative
* 64 sets
* 64 byte line size
Dual 32K L1 Data caches
* Same as above
Single 6M L2 Unified cache
e 24-way set associative (!!!)
* 4096 sets
* 64 byte line size

4GB Main memory
1TB Disk

Basic Cache Organization
Q: How to decide block size?
A: Try it and see

But: depends on cache size, workload,
associativity, ...

Experimental approach!

10%

Miss 5%
rate

0%

Experimental Results

O
L T ~ - o 64K
B —+ - —3 256K
16 32 64 128 256
Block size

Tradeoffs
For a given total cache size,

larger block sizes mean....
* fewer lines
* so fewer tags (and smaller tags for associative caches)
* so less overhead
* and fewer cold misses (within-block “prefetching”)

But also...

* fewer blocks available (for scattered accesses!)
* so more conflicts
* and larger miss penalty (time to fetch block)

Writing with Caches

10

Cached Write Policies

Q: How to write data?

idr) Cache — Memory
CPU d—) SRAM — DRAM
ata

If data is already in the cache...
No-Write
e writes invalidate the cache and go directly to memory

Write-Through

e writes go to main memory and cache

Write-Back

 CPU writes only to cache
* cache writes to main memory later (when block is evicted)

Write Allocation Policies
Q: How to write data?

idr) Cache — Memory
CPU d—) SRAM — DRAM
ata

If data is not in the cache...
Write-Allocate

 allocate a cache line for new data (and maybe write-through)

No-Write-Allocate
* ignore cache, just go to main memory

A Simple Direct Mapped Cache

Using byte addresses in this example! Addr Bus =5 bits

Processor Direct Mapped Cache Memory

+ Write-through 101

b $1 < M[1] . ‘1) 103
b $2 < M[7] + Write-allocate > 107
sb $2—>M[O0] 3 109
sb $1—>M[5] 4l 113
b $2 < M[9] Z 1;;
sb S1—->M[5] ; 137
Sb $1 —> M[0]) 139
9| 149

10| 151

51 11| 157
S2 12| 163
13| 167

53 14| 173
S4 15[179
16| 181

How Many Memory References?
Write-through performance

Each miss (read or write) reads a block from mem
* 5 misses 2 10 mem reads

Each store writes an item to mem

* 4 mem writes

Evictions don’t need to write to mem
* no need for dirty bit

14

A Simple Direct Map

Using byte addresses in this example! Addr Bus

Processor

b S1<— M[1]
b S2 < M[7]
sb $2—>M[O0]
sb S1—>M[5]
b S2 < M[9]
sb S1—->M[5]
sb S1—->M[O0]

WU WUnNUn
~ WO N -

ed
=5

Direct Mapped Cache
+ Write-back
+ Write-allocate

Cache
bits
Memory
o] 101
1| 103
2| 107
3] 109
4] 113
5| 127
6] 131
7] 137
8| 139
9| 149
10| 151
11| 157
12| 163
13| 167
14| 173
15| 179
16| 181

How Many Memory References?
Write-back performance

Each miss (read or write) reads a block from mem
* 5 misses 2 10 mem reads

Some evictions write a block to mem
1 dirty eviction 2 2 mem writes
* (+ 2 dirty evictions later 2 +4 mem writes)
* need a dirty bit

16

Wnte Back Meta- Data

Vv Tag Byte 1 Byte 2 .. Byte N

V =1 means the line has valid data
D =1 means the bytes are newer than main memory
When allocating line:
e SetV=1,D=0,fillin Tag and Data
When writing line:
e SetD=1
When evicting line:
e IfD=0:justsetV=0
 If D=1: write-back Data, thensetD=0,V=0

17

Performance: An Example
Performance: Write-back versus Write-through
Assume: large associative cache, 16-byte lines

for (i=1; i<n; i++)
Ale] += A[1];

for (i=0; i<n; i++)
B[i] = A[i]

18

Performance Tradeoffs
Q: Hit time: write-through vs. write-back?
A: Write-through slower on writes.
Q: Miss penalty: write-through vs. write-back?
A: Write-back slower on evictions.

19

Write Buffering
Q: Writes to main memory are slow!

A: Use a write-back buffer
* A small queue holding dirty lines
* Add to end upon eviction
 Remove from front upon completion

Q: What does it help?
A: short bursts of writes (but not sustained writes)

A: fast eviction reduces miss penalty

20

Write-through vs. Write-back

Write-through is slower

e But simpler (memory always consistent)

Write-back is almost always faster
e write-back buffer hides large eviction cost

e But what about multiple cores with separate caches
but sharing memory?

Write-back requires a cache coherency protocol
* Inconsistent views of memory
* Need to “snoop” in each other’s caches

e Extremely complex protocols, very hard to get right

21

Cache-coherency

Q: Multiple readers and writers?

A: Potentially inconsistent views of memory
CPU

CPU

CPU

CPU

L1

L1

L1

L1

L1

L1

L1

L1

L2

L2

net

Cache coherency protocol

Mem

* May need to snoop on other CPU’s cache activity

* Invalidate cache line when other CPU writes

* Flush write-back caches before other CPU reads
* Or the reverse: Before writing/reading...
e Extremely complex protocols, very hard to get right

22

Cache Conscious Programming

23

Cache Conscious Programming

// H=12, W = 10)

11

21

int A[H][W];

2

12

22

13

23

14

24

for(x=0; x < W; X++)

15

for(y=0; y < H; y++) 5e

sum += A[y][Xx]; 6

16

26

171 ...

18

19

10

20

Every access is a cache miss!

(unless entire matrix can fit in cache)

24

Cache Conscious Programming

// H =12, W = 10 112|3|4|5|6|7]|8

int A[H][W]; 11]12(13]...

for(y=0; y < H; y++)

for(x=0; x < W; X++)

sum += A[y][Xx];

Block size =4 =

Block size = 8 =2 87.5% hit rate

Block size =16 = 93.75% hit rate
And you can easily prefetch to warm the cache.

Summary

Caching assumptions
* small working set: 90/10 rule
e can predict future: spatial & temporal locality

Benefits
* (big & fast) built from (big & slow) + (small & fast)

Tradeoffs:
associativity, line size, hit cost, miss penalty, hit rate

26

Summary
Memory performance matters!

e often more than CPU performance
e ... because itis the bottleneck, and not improving much
* ... because most programs move a LOT of data
Design space is huge
 Gambling against program behavior

e Cuts across all layers:
users = programs = os =2 hardware

Multi-core / Multi-Processor is complicated
* Inconsistent views of memory

e Extremely complex protocols, very hard to get right

27

Virtual Memory

Processor & Memory

CPU address/data bus...
... routed through caches

... to main memory

CPU

e Simple, fast, but...

Q: What happens for LW/SW
to an invalid location?

* 0x000000000 (NULL)

* uninitialized pointer

Stack

L.

Heap

Data

Text

Memory

29

Multiple Processes
Running multiple processes...

Time-multiplex a single CPU core (multi-tasking)
 Web browser, skype, office, ... all must co-exist

Many cores per processor (multi-core)

or many processors (multi-processor)
* Multiple programs run

30

Multiple Processes

Q: What happens when another program is
executed concurrently on another processor?

 Take turns using memory? CPU
| Stack
| H
CPU —=°
-1 Data
- Text

Memory

31

Solution? Multiple processes/processors

Can we relocate second program?

* What if they don’t fit? Stack
* What if not contiguous? CPU Data
* Need to recompile/relink? Stack
. Heap
Heap

cPU Data

Text

Text

Memory

32

All problems in computer science can be solved by
another level of indirection.

— David Wheeler

— or, Butler Lampson
— or, Leslie Lamport
— or, Steve Bellovin

33

Virtual Memory
Virtual Memory: A Solution for All Problems

Each process has its own virtual address space

* Programmer can code as if they own all of memory

On-the-fly at runtime, for each memory access

* all access is through a virtual address
* translate fake virtual address to a real physical address
* redirect load/store to the physical address

34

Virtual address space

0x00000000
0x00010000

0x10000000

Ox THHF |

Physical address space

0x00000000

Ox00ffffef

page belonging to process

|| page not belonging to process

wikipedia

35

Programs load/store to virtual addresses
Actual memory uses physical addresses
Memory Management Unit (MMU)

* Responsible for translating on the fly

e Essentially, just a big array of integers:
paddr = PageTable[vaddr];

AqQ—51S
" CPU C CPU v
B B Y
C * VA * VA
MMU 1= MMU
A

36

Virtual Memory Advantages
Advantages

Easy relocation

* Loader puts code anywhere in physical memory

* Creates virtual mappings to give illusion of correct layout
Higher memory utilization

* Provide illusion of contiguous memory

e Use all physical memory, even physical address 0x0

Easy sharing
» Different mappings for different programs / cores

And more to come...

37

Address Translation
Pages, Page Tables, and
the Memory Management Unit (MMU)

38

Address Translation
Attempt #1: How does MMU translate addresses?
paddr = PageTable[vaddr];

Granularity?
e Per word...
 Per block...

e Variable...

Typical:
* 4KB — 16KB pages
e 4MB - 256MB jumbo pages

39

Virtual page number l Page Offset

¥

[Lookup in PageTable]

¥

Physical page number Page offset

Attempt #1: For any access to virtual address:

e Calculate virtual page number and page offset

* Lookup physical page number at PageTable[vpn]

e Calculate physical address as ppn:offset

vaddr

paddr

40

Read Mem[0x002015

Data CPU |=¥|MMU

Q: Where to store page tables?

A: In memory, of course...
Special page table base register
(CR3:PTBR on x86)

(CopO:ContextRegister on MIPS)

* lies to children

Simple Pa%_eTabIe

0xC20A3000

0x90000000

0x4123B000

0x10045000

0x00000000

41

vpn pgoff

vaddr

* lies to children

SUMMAY, e

Number
0x10045 «

OxC20A3

0x4123B &

0x00000 &

0x20340 -

PTBR

42

Page Size Example
Overhead for VM Attempt #1 (example)

Virtual address space (for each process):

* total memory: 2 bytes =4GB
e page size: 2 bytes =4KB

* entries in PageTable?

* size of PageTable?

Physical address space:
e total memory: 2 bytes=512MB
e overhead for 10 processes?

* lies to children

43

PhysilQVQJid Pages

V Number
0 OxC20A3000
1 0x10045
0
0
1 OxC20A3 0x90000000
1 0x4123B
1 0x00000
0
0x4123B000
Cool Trick #1: Don’t map all pages
Need valid bit for each 0x10045000
page table entry
Q: Why?

0x00000000

Assume most of PageTable is empty
How to translate addresses? Multi-level PageTable

Beyond Flat Page Tables

10 bits 10 bits 10 bits 2 | vaddr
Word
—> | PTEntry
Page
—>| PDEntry
Page Table
PTBR >
Page
* x86 does er'zg%ﬁ%/O{Nis s

hage.ermissions

V RW X Number
0 0xC20A3000
1 0x10045
0
0
1 OxC20A3 0x90000000
1 0x4123B
1 0x00000
0
0x4123B000
Cool Trick #2: Page permissions!

Keep R, W, X permission bits for ox10045000
each page table entry

Q: Why? 0x00000000

Physical PA%EIiaSing

V RW X Number
0 OxC20A3000
1 0xC20A3
0
0
1 OxC20A3 0x90000000
1 0x4123B
1 0x00000
0
0x4123B000
Cool Trick #3: Aliasing
Map the same physical page 0x10045000
at several virtual addresses
Q: Why?

0x00000000

Paging

48

Paging
Can we run process larger than physical memory?
* The “viiiuai” in “virtual memory”
View memory as a “cache” for secondary storage

 Swap memory pages out to disk when not in use

* Page them back in when needed

Assumes Temporal/Spatial Locality

e Pages used recently most likely to be used again soon

49

Physical Pagaglng
VRWXD Number
invalid
0 0x10045
invalid
invalid
0| disk sector 200

OIFRIOCOIOC|IO|O |~ |0

0| disk sector 25
1 0x00000
invalid

Cool Trick #4: Paging/Swapping
Need more bits:
Dirty, RecentlyUsed, ...

0xC20A3000

0x90000000

0x4123B000

0x10045000

0x00000000

25

50

Role of the Operating System
Context switches, working set,
shared memory

51

sbrk

Suppose Firefox needs a new page of memory
(1) Invoke the Operating System

sbrk(int nbytes);
(2) OS finds a free page of physical memory

 clear the page (fill with zeros)

* add a new entry to Firefox’s PageTable

52

Context Switch

Suppose Firefox is idle, but Skype wants to run

(1) Firefox invokes the Operating System
int sleep(int nseconds);
(2) OS saves Firefox’s registers, load skype’s
e (more on this later)
(3) OS changes the CPU’s Page Table Base Register
* Cop0:ContextRegister / CR3:PDBR

(4) OS returns to Skype

53

Shared Memory
Suppose Firefox and Skype want to share data

(1) OS finds a free page of physical memory
 clear the page (fill with zeros)
* add a new entry to Firefox’s PageTable

* add a new entry to Skype’s PageTable
— can be same or different vaddr
— can be same or different page permissions

54

Multiplexing

Suppose Skype needs a new page of memory, but Firefox
is hogging it all

(1) Invoke the Operating System
void *sbrk(int nbytes);
(2) OS can’t find a free page of physical memory
* Pick a page from Firefox instead (or other process)
(3) If page table entry has dirty bit set...
* Copy the page contents to disk

(4) Mark Firefox’s page table entry as “on disk”
 Firefox will fault if it tries to access the page

(5) Give the newly freed physical page to Skype
e clear the page (fill with zeros)
* add a new entry to Skyps’s PageTable

55

Paging Assumption 1

OS multiplexes physical memory among processes

e assumption # 1:
processes use only a few pages at a time

* working set = set of process’s recently actively pages

1 -

0x00000000 <o 0x90000000

H recent
accesses
——

56

P1

Reasors o

I swlalplpleg[F h in g

mem

disk

Q: What if working set is too large?

Case 1: Single process using too many pages

working set swapped
mem disk
Case 2: Too many processes
ws || ws [[ws]] ws || ws || ws
mem disk

57

Thrashing

Thrashing b/c working set of process (or processes)

greater than physical memory available
— Firefox steals page from Skype
— Skype steals page from Firefox

* |/O (disk activity) at 100% utilization

— But no useful work is getting done

|deal: Size of disk, speed of memory (or cache)
Non-ideal: Speed of disk

58

Paging Assumption 2

OS multiplexes physical memory among processes

* assumption # 2:
recent accesses predict future accesses

e working set usually changes slowly over time
— ‘]

working set
]

time

, More Thrashin%
Q: What if working set changes rapidly or

unpredictably?

i jD L L O

;Q ﬁ E]

2 O b :HH:DED S o F

g T+ O |
time

A: Thrashing b/c recent accesses don’t predict
future accesses

Preventing Thrashing

How to prevent thrashing?
e User: Don’t run too many apps
* Process: efficient and predictable mem usage

e OS: Don’t over-commit memory, memory-aware
scheduling policies, etc.

61

