Virtual Memory 1

Hakim Weatherspoon
CS 3410, Spring 2011

Computer Science
Cornell University

P & H Chapter 5.4 (up to TLBs)

Announcements

HW3 available due today Tuesday
e HWS3 has been updated. Use updated version.
 Work with alone

* Be responsible with new knowledge

PA3 available later today or by tomorrow
* Work in pairs

Next five weeks

* One homeworks and two projects
* Prelim2 will be Thursday, April 28t
* PA4 will be final project (no final exam)

Goals for Today

Title says Virtual Memory, but really finish caches:
writes

Introduce idea of Virtual Memory

Cache Design

Need to determine parameters:
e Cache size
e Block size (aka line size)
 Number of ways of set-associativity (1, N, =)
* Eviction policy
 Number of levels of caching, parameters for each
e Separate I-cache from D-cache, or Unified cache

e P g policies / instructions
@\rite policy

>\dmidecode\-t cache A Real Example

Ca ation Dual-core 3.16GHz Intel
Configuration: Enabled, Not Socketed, Level 1 .
Operational Mode: Write Back - (purChased In 2009)

Installed Sizev 128 KB

Error Correction Typer None
Cache Information

Configuration: Enabled, Not Socketed, Level 2

Operational Mode: Varies With Memory Address

Installed Size: 6347

Error Correction Type: Single-bit ECC
> c¢d /sys/devices/system/cpu/cpu@; grep cache/*/*
cache/index0@/level:1
cache/index@/type:Data
cache/1ndexg;2iz;Zif;:fiiiiiéiﬁiﬁ!_ﬁ_:::>
cache/index
cache/index@/coherency line size:64
cache/index@/size:32K
cache/index1/level:1

cache/index1/type: ructi
cache/inde ays _of_associativity:8
cache/in tsT64

cache/index1/coherency_line size:64

cache/index1/size:32K

cache/index2/level:2

cache/index2/type:Unified

cache/index2/shared_cpu_list:0-1

cache/index2/ways_of_associativity:24

cache/index2/number of sets:4096

cache/index2/coherency line size:64 5
cache/index2/size:6144K

A Real Example
Dual-core 3.16GHz Intel

Dual 32K L1 Instruction caches (purchased in 2009)
* 8-way set associative
C A
. 6dsote 4/ cral
* 64 byte line size 7 ~
Dual 32K L1 Data caches a7zj
* Same as above Q) | JEN [77)

Single 6M L2 Unified cache™ ~ | <
e 24-way set associative (!!!) L ﬁ
* 4096 sets ——
* 64 byte line size
L
4GB Main memory ugg)
1TB Disk @

Basic Cache Organization
Q: How to decide block size?
A: Try it and see

But: depends on cache size, workload,
associativity, ...

Experimental approach!

Experimental Results

Tradeoffs
For a given total cache size,

larger block sizes mean....
* fewer lines
e so fewer tags (and smaller tags for associative caches)
* so less overhead

* and fewer cold misses (within-block “prefetching”)
But also...

* fewer blocks available (for scattered accesses!)
* so more conflicts
* and larger miss penalty (time to fetch block)

Writing with Caches

10

Cached Write Policies

Q: How to write data”?
/
/4/
ﬂ/ idr) ?(Cache — Memory
CPU d—) SRAM — DRAM
ata

If data is already in the cache...
No-Write
e writes invalidate the cache and go directly to memory

Write-Through — Coss/s 1164 ‘é 6%14 S(ocu

e writes go to main memoéand cache
Write-Back — mca,g (< (on‘(

* CPU writes only to cache
e cache writes to main memory later (when block is evicted)

Q: How to write ©

Write Allocation Policies

CPU

A

\

—3ddr |

ﬁ

ﬁ

SRAM

S

ata” :/—\
aC Coc_:'

—

 —

data

(If data is not in t%

 allocate a cache line for new data (and maybe write-through)
No-Write-Allocate

* ignore cache, just go to main memory

Memory
DRAM

12

A Simple Direct Mapped Cache

Using byte addresses in this example! Addr Bus =5 bits

Processor Direct Map ed Cache
-th roug
b $1<—M[1] €-)
b $2<M[7] @Ellocate
' sb S2—->M[O0] | = o00d /#
h $1 — ln/o o
sb S1—>M[5] = 00”/
b $2 < M[9]
sb $1— M[5] V tag
sb $1—>M[0] o T /o
PX
Sl / 03 /(
L~
2| 3=
3 /372
$3 J
S4 Hits: Misses:

How Many Memory References?
Write-through performance

Each miss (read or write) reads a block from mem
* 5 misses 2 10 mem reads

Each store writes an item to mem
* 4 mem writes

Evictions don’t need to write to mem
* no need for dirty bit

14

A Simple Direct Map ggb

Using byte addresses in this example! Addr Bus

Cache

its

Processor

b $1<M[1] ~
b $2<M[7]
sb $2—>M[0] —
sb $1—-M[5]

b $2 <~ M[9]
sb $1—>M[5]
sb $1—>M[O0]
Sl /03
2| 7377
S3
$4

Direct Mapped Cache
Write-bac

+ Write-allocate
/= 0009 |

(/a///< ;’-‘—UC)L/L

/ 7201091
VD tag

Hcee | tol | 103 ¢
N o
/0|0<) (31 /37

Hits: Misses:

Memory

How Many Memory References?
Write-back performance

Each miss (read or write) reads a block from mem
' 0 mem reads

s write a block to mem
1 dirty eviction 2 2 mem writes
* (+ 2 dirty evictions later 2 +4 mem writes)
* need a dirty bit

16

Write-Back Meta-Data
\ D. Tag. Byte 1 Byfz .. Byte N

V =1 means the line has valid data
D = 1 means the bytes are newer than main memory
When allocating line:
e SetV=1,D=0,fillin Tag and Data
When writing line:
e SetD=1
When evicting line:
e IfD=0:justsetV=0
 If D=1:write-back Data, thensetD=0,V =0

17

Performance: An Example
Performance: Write-back versus Write-through

Assume: large associative cache, 16-byte lines {
:7 NWritéy

£ 0 mem
(4/6): /&\//‘,(Q
/| (dc S&) Ur

for (i=1; i<n; i++)
Ale] += A[1];

for (i=0; i<n; i++)

B[i] = A[i] (/\/7 — @‘: n oy

£o mem

18

Performance Tradeoffs
Q: Hit time: write-through vs. write-back?
A: Write-through slower on writes.
Q: Miss penalty: write-through vs. write-back?
A: Write-back slower on evictions.

19

Write Buffering

Q: Writes to main memory are slow! cPU

A: Use a write-back buffer V)
* A small queue holding dirty lines —
* Add to end upon eviction —
 Remove from front upon completion z

Q: What does it help? -

A: short bursts of writes (but not sus a?ﬁ?@d(mﬁes)

A: fast eviction reduces miss penalty

20

Write-through vs. Write-back
Write-through is slawer

e But simpler (memory always consistent) /\
Valie 11

Write-back is almost always faster Aigher (eve €
g cee ch @

* write-back buffer hides large eviction\cost ,Mons/g(pﬂa\

e But what about multiple cores with separate caches

but sharing memory?
"’lema@

Write-back requires a_cache coherency protoco

* Inconsistent views of memory

* Need to ‘snaop” in each other’s caches
e Extremely complex protocols, very hard to get right

21

net

Cache-coherency

Q: Multiple readers and writers?

A: Potentiallyviews of memory

CPU CPU CPU CPU
{Z\;ﬂ L1) ri__l L1 (L1 LL||L2|fLD
7\?(W) L2

A Mem

Cache coherency protocol
* May need to snoop on other CPU’s cache activity

* Invalidate cache line when other CPU writes

e Flush write-back caches before other CPU reads

—

* Or the reverse: Before writing/reading...
e Extremely complex protocols, very hard to get right

Py

Cache Conscious Programming

23

Cache Conscious Programming

[/ H—=7212;, W.= 10 1 {1121 -
int A[H][W]; T 2 [12]22

3 13|23
for(x=0; x < W; x++) < 44 254 ”

for(y=0; y < H; y++) Je
sum += A[y][x]; 6|16(26
7 |17
8|18
9 (19
10{20

Every access is a cache miss!
(unless entire matrix can fit in cache)

24

Cache Conscious Programming
// H =12, W =10 12345678-

int A[H][W]; [l 15|

for(y=0; y < H; y++)

for(x=0; x < W; X++)

sum += A[y][x];

Block size = 4 - 75% hit rate
Block size = 8 = 87.5% hit rate
Block size =16 = 93.75% hit rate
And you can easily prefetch to warm the cache.

25

Summary

Caching assumptions
* small working set: 90/10 rule
e can predict future: spatial & temporal locality

Benefits
* (big & fast) built from (big & slow) + (small & fast)

Tradeoffs:
associativity, line size, hit cost, miss penalty, hit rate

26

Summary
Memory performance matters!

e often more than CPU performance
* ... because it is the bottleneck, and not improving much
* ... because most programs move a LOT of data
Design space is huge
 Gambling against program behavior

e Cuts across all layers:
users = programs = os =2 hardware

Multi-core / Multi-Processor is complicated
* Inconsistent views of memory

e Extremely complex protocols, very hard to get right

27

Virtual Memory

Processor & Memory
CPU address/data bus...

... routed through caches

... to main memory CPU

* Simple, fast, but... t Stack
e

Q: What happens for LW/SW

. : . Heap
to an invalid location? P
7 Dat
. 0x000000000 (NULL) < i
o] /7(/40/4 Text
* uninitialized pointer g mE
{ycept[/anﬁ Ut

Memory

29

Multiple Processes

Running multiple processes...
Time-multiplex a single CPU core (multi-tasking)

 Web browser, skype, office, ... all must co-exist

Many cores per processor (multi-core) ~
or many processors (multi-processor)

* Multiple programs run simultaneously
rte~

/;%Z “)A4/(//e55 A b5 Crac &
/ ﬂ/
P/‘ew’n ‘g_S /D'lfo"// (/5 M /Vae”[50/43

Multiple Processes

Q: What happens when another program is
executed concurrently on another procg;sor?

 Take turns using memory? CPU
| Stack
| H
CPU —
- Data
- Text
O

Memory

31

Solution? Multiple processes/processors

Can we relocate second program?
* What if they don’t fit? A P Stack
* What if not contiguous? CPU Data

e N o recompile/relink?
cedt P / Stack

Heap

Heap

CPU

Data

Text

Text

Memory

32

All problems in computer science can be solved by
another level of indirection.

i
@ — David Wheeler
. Vir {b(q/ (/(/Xr — or, Butler Lampson

& onera ok by D _ or, Leslie Lamport
o & ;”ij A/v(ﬁn — or, Steve Bellovin
/

Me/./’

33

Virtual Memory

Virtual Memory: A Solution for All Problems 2} 2

O—
Each process has its own virtual address space

* Programmer can code as if they own all of memory

On-the-fly at runﬁr/ge, for each memory access

 all access is indirect through a virtual address

~ o ""7 .
°@at¥ address to a real physical address

* redirect load/store to the physical address

34

Virtual address space

0x0000000
0x0001000

d

Physical address space

0x00000000

0x10000000 N[T
data \ _—7

Y ~> .
SR N

}[K?fffffff

 Ox00FFFF

page belonging to process

page not belonging to process

wikipedia

W2ZZ

N <

Adx1S
A ((oap CPU C CPU
B B
i
—’_/=Yf {H
Vindaa C A D
A Ay
$ace /34\75 e

Programs load/store to virtual addresses
Actual memory uses physical addresses

Memory Management Unit (MMU)
* Responsible for translating on the fly

e Essentially, just a big array of integers:
paddr = PageTable[vaddr];

—_

36

Virtual Memory Advantages
Advantages

Easy relocation

* Loader puts code anywhere in physical memory

* Creates virtual mappings to give illusion of correct layout
Higher memory utilization

* Provide illusion of contiguous memory

e Use all physical memory, even physical address 0x0
Easy sharing

 Different mappings for different programs / cores

And more to come...

37

Address Translation
Pages, Page Tables, and
the Memory Management Unit (MMU)

- S —

38

Address Translation
Attempt #1: How does MMU translate addresses?
paddr = PageTable[vaddr];

Granularity?
e Per word...
 Per block...

e Variable...

Typical:
* 4KB — 16KB pages
e 4MB — 256MB jumbo pages

39

Virtual page number l Page Offset

¥

[Lookup in PageTable]

¥

Physical page number Page offset

Attempt #1: For any access to virtual address:

e Calculate virtual page number and page offset

* Lookup physical page number at PageTable[vpn]

e Calculate physical address as ppn:offset

vaddr

paddr

40

Read Mem[0x002015

Data CPU =¥ MMU

Q: Where to store page tables?

A: In memory, of course...
Special page table base register
(CR3:PTBR on x86)

(CopO:ContextRegister on MIPS)

* lies to children

Simple Pa%_eTabIe

0xC20A3000

0x90000000

0x4123B000

0x10045000

0x00000000

41

vpn pgoff

vaddr

* lies to children

SUMMALY, e

Number
0x10045 «

OxC20A3

0x4123B @

0x00000 &

0x20340 -

PTBR

42

Page Size Example
Overhead for VM Attempt #1 (example)

Virtual address space (for each process):

* total memory: 232 bytes = 4GB
* page size: 212 bytes = 4KB

* entries in PageTable?

* size of PageTable?

Physical address space:
 total memory: 2%° bytes = 512MB
e overhead for 10 processes?

* lies to children

43

Physi':QVQJid Pages

V Number
0
1 0x10045
0
0
1 0xC20A3
1 0x4123B
1 0)(0]e0]0]0)
0

Cool Trick #1: Don’t map all pages

Need valid bit for each
page table entry

Q: Why?

0xC20A3000

0x90000000

0x4123B000

0x10045000

0x00000000

44

Assume most of PageTable is empty
How to translate addresses? Multi-level PageTable

Beyond Flat Page Tables

10 bits 10 bits 10 bits 2 | vaddr
Word
— |_PTEntry
Page
— | _PDEntry
Page Table
PTBR >

* x86 does

Page

SULEEPNis

45

hage.fermissions

V RW X Number
0 0xC20A3000
| 0x10045
0
0
1 OxC20A3 0x90000000
| 0x4123B
| 0x00000
0
0x4123B000
Cool Trick #2: Page permissions!

Keep R, W, X permission bits for ox10045000
each page table entry

Q: Why? 0x00000000

Physical PA%eIiaSing

V RW X Number
0 OxC20A3000
1 0xC20A3
0
0
1 OxC20A3 0x90000000
1 0x4123B
1 0x00000
0
0x4123B000
Cool Trick #3: Aliasing
Map the same physical page 0x10045000
at several virtual addresses
Q: Why?

0x00000000

Paging

48

Paging
Can we run process larger than physical memory?
* The “vv@a=t’ in “virtual memory”

View memory as a “cache” for secondary storage
 Swap memory pages out to disk when not in use

* Page them back in when needed

Assumes Temporal/Spatial Locality

e Pages used recently most likely to be used again soon

49

Physical PaEeaglng
VRWXD Number
invalid
0 0x10045
invalid
invalid
0| disk sector 200

OIFRIOIOC|IO|O |~ |0

0| disk sector 25
1 0x00000
invalid

Cool Trick #4: Paging/Swapping
Need more bits:
Dirty, RecentlyUsed, ...

0xC20A3000

0x90000000

0x4123B000

0x10045000

0x00000000

200

25

50

Role of the Operating System
Context switches, working set,
shared memory

51

sbrk

Suppose Firefox needs a new page of memory
(1) Invoke the Operating System

void *sbrk(int nbytes);
(2) OS finds a free page of physical memory

 clear the page (fill with zeros)

* add a new entry to Firefox’s PageTable

52

Context Switch

Suppose Firefox is idle, but Skype wants to run

(1) Firefox invokes the Operating System
int sleep(int nseconds);
(2) OS saves Firefox’s registers, load skype’s
e (more on this later)
(3) OS changes the CPU’s Page Table Base Register
* Cop0:ContextRegister / CR3:PDBR

(4) OS returns to Skype

53

Shared Memory
Suppose Firefox and Skype want to share data

(1) OS finds a free page of physical memory
 clear the page (fill with zeros)
* add a new entry to Firefox’s PageTable

* add a new entry to Skype’s PageTable
— can be same or different vaddr
— can be same or different page permissions

54

Multiplexing

Suppose Skype needs a new page of memory, but Firefox
is hogging it all

(1) Invoke the Operating System
void *sbrk(int nbytes);
(2) OS can’t find a free page of physical memory
* Pick a page from Firefox instead (or other process)
(3) If page table entry has dirty bit set...
* Copy the page contents to disk

(4) Mark Firefox’s page table entry as “on disk”
* Firefox will fault if it tries to access the page

(5) Give the newly freed physical page to Skype
* clear the page (fill with zeros)
* add a new entry to Skyps’s PageTable

55

Paging Assumption 1

OS multiplexes physical memory among processes

* assumption # 1:
processes use only a few pages at a time

* working set = set of process’s recently actively pages

H recent
accesses

0x00000000 0x90000000

56

P1

Reagons o

I swlalplpleé[F h n g

mem

disk

Q: What if working set is too large?

Case 1: Single process using too many pages

working set swapped
mem disk
Case 2: Too many processes
ws || ws [[ws]] ws || ws || ws
mem disk

57

Thrashing

Thrashing b/c working set of process (or processes)

greater than physical memory available
— Firefox steals page from Skype
— Skype steals page from Firefox

* |/O (disk activity) at 100% utilization

— But no useful work is getting done

|deal: Size of disk, speed of memory (or cache)
Non-ideal: Speed of disk

58

Paging Assumption 2

OS multiplexes physical memory among processes

* assumption # 2:
recent accesses predict future accesses

e working set usually changes slowly over time

working set

time —

59

More Thrashln%
Q: What if working set changes rapidly or

unpredictably?

- |._'..l. .l.l :_-
F::l mu By i. "_ i

working set

TL -'-—-. ny B

time —

A: Thrashing b/c recent accesses don’t predict
future accesses

Preventing Thrashing

How to prevent thrashing?
e User: Don’t run too many apps
* Process: efficient and predictable mem usage

e OS: Don’t over-commit memory, memory-aware
scheduling policies, etc.

61

