Caches

Hakim Weatherspoon
CS 3410, Spring 2011

Computer Science
Cornell University

See P&H 5.1, 5.2 (except writes)

Announcements

HW3 available due next Tuesday
 Work with alone
* Be responsible with new knowledge

Use your resources

* FAQ, class notes, book, Sections, office hours, newsgroup,
CSUGLab

Next six weeks
* Two homeworks and two projects
. preliml tomorrow, Wednesday, in Philips 101
* Prelim2 will be Thursday, April 28t
* PA4 will be final project (no final exam) 2

Goals for Today: caches

Caches vs memory vs tertiary storage

* Tradeoffs: big & slow vs small & fast
— Best of both worlds

* working set: 90/10 rule
 How to predict future: temporal & spacial locality

Cache organization, parameters and tradeoffs
associativity, line size, hit cost, miss penalty, hit
rate

 Fully Associative = higher hit cost, higher hit rate

 Larger block size =2 lower hit cost, higher miss penalty

3

Performance
CPU clock rates ~0.2ns — 2ns (5GHz-500MHz)
Technology Capacity S/GB Latency

Tape 1TB
Disk 2TB
SSD (Flash) 128 GB
DRAM 38 GB

SRAM off-chip 8 MB
SRAM on-chip 256 KB

S.17 100s of seconds

S.03 Millions of cycles (ms)
S2 Thousands of cycles (us)
S10 50-300 cycles (10s of ns)
S4000 5-15 cycles (few ns)

??? 1-3 cycles (ns)

Others: eDRAM aka 1-T SRAM, FeRAM, CD, DVD, ...
Q: Can we create illusion of cheap + large + fast?

Memory Pyramid

< 1 cycle access

RegFile
100s bvtes
L1 Cache 1-3 cycle access
L3 becoming more/ (several KB)
common
(eDRAM ?) L2 Cache (%-32MB) 5-15 cycle access
Memory (128MB — few GB) 50-300 cycle access

1000000+

Disk (Many GB — few TB)
cycle access

These are rough numbers: mileage may vary for latest/greatest
Caches usually made of SRAM (or eDRAM) 5

Memory Hierarchy

Memory closer to processor
e small & fast

e stores active data

Memory farther from processor
* big & slow

e stores inactive data

Active vs Inactive Data

Assumption: Most data is not active.
Q: How to decide what is active?
A: Some committee decides

A: Programmer decides

A: Compiler decides

A: OS decides at run-time

A: Hardware decides
at run-time

Insight of Caches
Q: What is “active” data?

If Mem([x] is was accessed recently...
... then Mem|[x] is likely to be accessed soon

* Exploit temporal locality:

... then Mem|[x * €] is likely to be accessed soon
* Exploit spatial locality:

Memory-trace—; LO_Caj“ty

0x7c9a2b18 Int n = 4;

Ox7c9a2b19 int k[] = { 3, 14, 0, 10 };
Ox7c9a2bla

Ox7c9a2blb
o7 coablc int fib(int 1) {

Ox7c9a2bld if (i <= 2) return 1i;
@x7c9a2ble else return fib(i-1)+fib(i-2);
Ox7c9a2blf }

Ox7c9a2b20
Ox7c9a2b21

@x7c9a2b22 int main(int ac, char **av) {

©x7c9a2b23 . . . s L.
Ox7c922b28 for (int 1 = 0; 1 < n; i++) {

Ox7c9a2b2c printi(fib(k[i]));
0x0040030cC prints("\n");
0x00400310

Ox7c9a2bo4 }

0x00400314 }

Ox7c9a2boo

0x00400318

0x0040031c

Locality

I
RN
X
.\

. EF

Ox7c9a2blf

v XY¥duvuvuyo |

10

Memory Hierarchy

Memory closer to processor is fast but small
* usually stores subset of memory farther away

— “strictly inclusive”

e alternatives:
— strictly exclusive

— mostly inclusive

 Transfer whole blocks

(cache lines):
4kb: disk €2 ram

256b: ram & L2
64b: L2 &< L1

11

Cache Lookups (Read)

Processor tries to access Mem|x]

Check: is block containing Mem|[x] in the cache?

* Yes: cache hit
— return requested data from cache line

* No: cache miss
— read block from memory (or lower level cache)
— (evict an existing cache line to make room)
— place new block in cache
— return requested data
— and stall the pipeline while all of this happens

12

Cache Organization

Cache Controller

CPU

Cache has to be fast and dense

* Gain speed by performing lookups in parallel
— but requires die real estate for lookup logic
* Reduce lookup logic by limiting where in the cache a
block might be placed

— but might reduce cache effectiveness
13

Three common designs

A given data block can be placed...
* ...inany cache line = Fully Associative
* ...in exactly one cache line = Direct Mapped
* ...in a small set of cache lines = Set Associative

14

Direct Mapped Cac
Direct Mapped Cache

e Each block number
mapped to a single
cache line index

e Simplest hardware

line O
line 1

he

0)7{0]0]0[0]0]0)
0x000004
0x000008
0x00000c
0x000010
0x000014
0x000018
0x00001c
0x000020
0x000024
0x000028
0x00002c
0x000030
0x000034
0x000038
0x00003c
0x000040
0x000044
0x000048

15

Direct Mapped Cac
Direct Mapped Cache

e Each block number
mapped to a single
cache line index

e Simplest hardware

line 0
line 1
line 2
line 3

he

0)7{0]0]0[0]0]0)
0x000004
0x000008
0x00000c
0x000010
0x000014
0x000018
0x00001c
0x000020
0x000024
0x000028
0x00002c
0x000030
0x000034
0x000038
0x00003c
0x000040
0x000044
0x000048

16

Tags and Offsets

Assume sixteen 64-byte cache lines

Ox/7FFF3D4D
=01111171117111 11110011 1101 0100 1101

Need meta-data for each cache line:
 valid bit: is the cache line non-empty?
* tag: which block is stored in this line (if valid)

Q: how to check if X is in the cache?
Q: how to clear a cache line?

17

A Simple Direct Mapped Cache

Using byte addresses in this example! Addr Bus =5 bits

Processor Direct Mapped Memory
b $1< M[1] Cache X
b $2 <~ M[13] A = 2
b S3 <~ M[O] | I 3
b S3 < M[6] 4
b $2 < M[5 2
b $2 < M[10] 8
b $2 < M[12] 9

10
51 11
S2 12
13
53 _ . 14
S4 Hits: Misses: 15
16

Direct Mapped Cache (Reading)

Tag index dﬁset

V Tag Block

Direct Mapped Cache Size

Tag index dﬁset

n bit index, m bit offset
Q: How big is cache (data only)?
Q: How much SRAM needed (data + overhead)?

20

Cache Performance

Cache Performance (very simplified):
L1 (SRAM): 512 x 64 byte cache lines, direct mapped
Data cost: 3 cycle per word access
Lookup cost: 2 cycle
Mem (DRAM): 4GB
Data cost: 50 cycle per word, plus 3 cycle per consecutive word

Performance depends on:
Access time for hit, miss penalty, hit rate

21

Misses
Cache misses: classification

The line is being referenced for the first time
e Cold (aka Compulsory) Miss

The line was in the cache, but has been evicted

Py

Avoiding Misses
Q: How to avoid...
Cold Misses

e Unavoidable? The data was never in the cache...
* Prefetching!

Other Misses
* Buy more SRAM
* Use a more flexible cache design

23

Bigger cache doesn’t always help...
Mem access trace: 0, 16,1, 17/, 2, 18, 3, 19, 4, ...
Hit rate with four direct-mapped 2-byte cache lines?

With eight 2-byte cache lines?

With four 4-byte cache lines?

0O N OO UV A W N PO

e e
o U b W N - O O

NN R R
= O W 00

24

Misses
Cache misses: classification

The line is being referenced for the first time
e Cold (aka Compulsory) Miss

The line was in the cache, but has been evicted...

... because some other access with the same index
* Conflict Miss

... because the cache is too small

* j.e. the working set of program is larger than the
cache

* Capacity Miss

25

Avoiding Misses
Q: How to avoid...

Cold Misses

e Unavoidable? The data was never in the cache...
* Prefetching!

Capacity Misses
* Buy more SRAM
Conflict Misses

e Use a more flexible cache design

26

Three common designs
A given data block can be placed...

 ...inany cache line = Fully Associative
* ...in exactly one cache line = Direct Mapped
e ...in a small set of cache lines = Set Associative

27

A Simple Fully Associative Cache

Using byte addresses in this example! Addr Bus =5 bits

Processor

b S1 < M[1]
b $2 < M[13]
b S3 <~ M[O0]
b S3 <~ M[6]
b S2 <~ M[5]
b S2 <~ M[6]
b $2 < M[10]
b S2 <~ M[12]

Fully Associative
Cache

Hits: Misses:

Memory

coNO UL B WNPEFEO

\o)

f

10
11
12
13
14
15
16

101

103
107
109
113
127
131
137
139
149
151
157
163
167
173
179
181

t

}

}

}

}

}

i

Fully Associative Cache (Reading)

® Tag Qffset
V Tag Block
e °? °? °?
= >\, line select /
- 64bytes
\ word select /<—
-T 32bits
hit?

data

29

Fully Associative Cache Size

Tag Qffset

m bit offset, 2" cache lines
Q: How big is cache (data only)?
Q: How much SRAM needed (data + overhead)?

Fully-associative reduces conflict misses...

... assuming good eviction strategy
Mem access trace: 0, 16,1, 17, 2, 18, 3, 19, 4, 20, ...
Hit rate with four fully-associative 2-byte cache lines?

O 0N O Ul b W N RL|O

e e
o U A W N - O

NN R R
= O W 00

31

... but large block size can still reduce hit rate
vector add trace: O, 100, 200, 1, 101, 201, 2, 202, ...
Hit rate with four fully-associative 2-byte cache lines?

With two fully-associative 4-byte cache lines?

32

Misses
Cache misses: classification

Cold (aka Compulsory)

* The line is being referenced for the first time
Capacity

* The line was evicted because the cache was too small

* i.e. the working set of program is larger than the
cache

Conflict

* The line was evicted because of another access
whose index conflicted

33

Summary
Caching assumptions

* small working set: 90/10 rule
e can predict future: spatial & temporal locality

Benefits
* big & fast memory built from (big & slow) + (small & fast)
Tradeoffs:
associativity, line size, hit cost, miss penalty, hit
rate
* Fully Associative = higher hit cost, higher hit rate
 Larger block size = lower hit cost, higher miss penalty

Next up: other designs; writing to caches

34

