Caches

Hakim Weatherspoon
CS 3410, Spring 2011

Computer Science
Cornell University

See P&H 5.1, 5.2 (except writes)

Announcements
HW3 available due next Tuesday

 Work with alone W

* Be responsible with new knowledge

Use your resources

* FAQ, class notes, book, Sections, office hours, newsgroup,
CSUGLab

Next six weeks
* Two homeworks and two projects

e Optional preliml tomorrow, Wednesday, in Philips 101
* Prelim2 will be Thursday, April 28t

 PA4 will be final project (no final exam)

Goals for Today: caches

Caches vs memory vs tertiary storage
* Tradeoffs: big & slow vs small & IEN

— Best of both worlds

* working set: 90/10 rule —

/ —
 How to predict future: temporal & spacial locality

Cache organization, parameters and tradeoffs
associativity, line size, hit cost, miss penalty, hit
rate

 Fully Associative = higher hit cost, higher hit rate

 Larger block size =2 lower hit cost, higher miss penalty

3

Performance

CPU clock rates ~0.2ns — 2ns (5GHz-500MHz) é
: CaPmc ‘ U)
Technology Capacity S/GB Latency +
enc
Tape 17B $.17 100s of s/g)c(:/c;{?gsz 2%0
Disk 2 TB S.03 Millions of cycles? (Pms)
SSD (Flash) 128 GB | S2 Thousands of cycles (us)
DRAM 8 GB $10 50-300 cycles (10s of ns)

\/SRAM off-chip 8 MB $4000 5-15 cycles (few ns)
SRAM on-chip 256 KB ??? 1-3 cycles (ns)

Others: eDRAM aka 1-T SRAM, FeRAM, CD, DVD, ...
Q: Can we create illusion of cheap + large + faEt?

Memory Pyramid

< 1 cycle access

Soosbuls 2~ 1o 4oy \ P19
> L1 Cache 1-3 cycle access 5/0(//
él ﬂ{mm - (several KB)

R e O
SR 12 Cache (#-32mB) . > 1> cycleacces

. W(Memory (128MB — few GB) 50-300 cycle access
2P

K Disk (Many GB — few TB) 1000000+
S cycle access

These are rough numbers: mileage may vary for latest/greatest
Caches usually made of SRAM (or eDRAM) 5

Memory Hierarchy

Memory closer to processor 90/,0 fUL/e
e small & fast

e stores active data

Memory farther from processor
* big & slow

e stores inactive data

(\6(C4<

Active vs Inactive Data

Assumption: Most data is not active.
Q: How to decide what is active?
A: Some committee decides

A: Programmer decides

A: Compiler decides

AN ON ides at run-time

A: Hardware decides
at run-time

Insight of Caches
Q: What is “active” data?

Al Chalownl(fo accocnk
If Mem([x] is was accessed recently...

... then Mem|[x] is likely to be accessed@

* Exploit temporal locality:

P(Aé f(ca&%(j aCCQS§?</< /V(ef’l[Kj

f’[/q4e/\

... then Mem|[x * €] is likely to be accessed soon
* Exploit spatial locality:

ow (Mé//‘b 6_[_9.4.,& COf?léﬂlh;ﬂ
%A«-ﬁj

w)

N

Memory trace

©x7c9a2bl8
©x7c9a2b19
©x7c9a2bla
©x7c9a2blb
©x7c9a2blc
©x7c9a2bld
Ox7c9a2ble
Ox7c9a2blf
©x7c9a2b20
Ox7c9a2b21
Ox7c9a2b22
©x7c9a2b23
Ox7c9a2b28
Ox7c9a2b2c
0x0040030c
0x00400310
Ox7c9a2bo4
0x00400314
©x7c9a2boo
0x00400318
0x0040031c

calit
int 4,)/
int (k[= { 3, 14, 0, 10 };
>, 14
int fib(int i) {

if (i <= 2) return i;
else return fib(i-1)+fib(i-2);

av) 1
i <E§) i++) {

int main(int ac, ch
for (int i = 0;

:iék“' printi(fib ¥
?ZVZ(prints("\n"); Sad
¢ } (P 0{(
}

Locality

Aot

L s e
S Can

v XY¥duvuvuyo |

Memory Hierarchy

Memory closer to processor is fast but small
e usually stores subset of memory farther a)v%%

— “strictly inclusive”

* alternatives:
— strictly exclusive
— mostly inclusive

* Transfer whole

(cache lines):
4kb: disk €< ram

Tt HMen B

L/

C L

,_/:@_%\\ (3
2564

256b: ram & L2

64b: L2 @@Kfr/" .

Cache Lookups (Read)

Processor tries to access Mem|x]

Check: is block containing Mem|[x] in the cache?

* Yes: cache hit
— return requested data from cache line

(4 : cache miss
Xlgep[gl(glock from memory (or lower level cache)
x f(e'wgt an eX|st|ng cache line to make room)

(\

place new block in cache

— rn requested data
N g

L _9 =2 and stall the pipeline while all of this happens
—J

12

Cache Organization

Cache Controller @
CPU 0(09/(6«/ ~

. T
Lﬁg{/C A L&
(e) H] L
=<afa ‘

ﬂ(a((q A\

) CQCM\—’/
‘ (f/ e |
Cache has to be fast and deﬁse

* Gain speed by performing lookups in parallel
— but requires die real estate for lookup logic Mdfaﬁ

* Reduce lookup logic by limiting where in the cache a
block might be placed 6e1é(0fﬁg

— but might reduce cache effectiveness
13

Three common designs

A glv§n data bIoc.k can be placeo.l.... /ot f(ewW;
* ...inany cache line 2 Fully Associative
* ...in exactly one cachen Direct Mapped " Hexh ¢
* ...ina small set of c%es ;E;t SSO??EVE
Be #l (\%{(O ’Z@K
s o &

c4@7/@5 ¢ Pm(eg{ "
Ry

14

Direct Mapped Ca

' 0X000000
Direct Mapped Cache | ooocon
 Each block number 0x000008
mapped to a single 0x00000c

L. 0x000010

cache line index [ox000014

e Simplest hardware 0x000018
0x00001c

qCc b < 0x000020
(. n2S 0| 0x000024
0x000028

ine 0|Gx0 - 0 0»(0:,, ‘—/ Ox0.., 3 Oxﬂ,wQ 0x00002c
line 1 [0x000030
| 0x000034

\ -/ \Ox000038
0x00003c

Ll wor Ay 0x000040

O 0x000044

0x000048

15

e Simplest hardware

X et

line
line
line
line

Direct Ma
Direct Mapped Cache

e Each block number
mapped to a single
cache line index

pped C%?he

4(((,lgj
0] <
1
2
3
L
1 wards

0x000000
0x000004

| <0xooooos
0x00000c
0x000010

L (Ox000014
<Ox000018

) 0x00001c
0x000020
@<0xooooz4
(0xoooozs

(0x00002¢
1A(Ox000030
0x000034

AS (OXOOOOBS
0x00003c
0x000040
0x000044

’ \Ox000048

T P\

16

Tags and Offsets

Assume sixteen 64-byte cache lines

Ox/7FFF3D4D
=01111171117111 11110011 1101 0100 1101

In /. .
?“'éq% /-,[4/% af Soom g wgfd(W/ n

(o C a7 er M:rd(
[AJ Z/é A O
Need meta-data for each cache line: "8

 valid bit: is the cache line non-empty?
* tag: which block is stored in this line (if valid)

Q: how to check if X is in the cache?
Q: how to clear a cache line?

17

A Simple Direct Mapped Cache

Using byte addresses in this example! Addr Bus =5 bits

Processor Direct Mappeglou o=t Memory
L Cache ~“=1 o
b $1 < M[1] oI of =173 1
b S2 < M[13] A = L/ 2
b $3< M[O0] 4Ly p_FOYTS 3
lb $3 < M[6]— ,f%‘”’ﬁjﬁﬁ 4/% 4
Ib $2 < M[5] (n/Qx \/ 2
b $2 < M[12] /QL 2 9
10

1 .. -

22 [fer | L3 [67 || =
63 1129 3] /3 R (13
14
S4 Hits: | Misses: /' (/ 15
16

Direct Mapped Cache (Reading)

Tag index C}ﬁset

/‘ ‘ z

Direct Mapped Cache Size

Tag index dﬁset

S——— YA
2 — -t ol

n bit index, m bit offset

/

: How big is cache (data only)?
: How much SRAM needed (data + overhead)?

20

Cache Performance

Cache Perfo e (very simplified):
\
L1 (SRAM): 512 yt cache lines, direct mapped

Data cost: 3 cycle per word access
Lookup cost: 2 cycle
Mem (DRAM): 4GB
Data cost: 50 cycle per word, plus 3 cycle per consecutive word

cycles por 44

L A+~50 /%3 = /Uf%ofss
9y S+ ¥00=\56 + 50+ I5¥3 =10 :’5«5

H/S’\ /(_): /L/’S"
Performance depends on:
Access time for hit, miss penalty, hit rate

21

Misses
Cache misses: classification

The line is being referenced for the first time
* Cold (aka Compulsory) Miss > frafeé 7

The line was in the cache, but has bee%@V((ztE@(

Py

Avoiding Misses
Q: How to avoid...
Cold Misses

e Unavoidable? The data was never in the cache...
* Prefetching!

Other Misses
* Buy more SRAM
* Use a more flexible cache design

23

Bigger cache doesn’t always help...
Mem access trace: 0, 16,1, 17/, 2, 18, 3, 19, 4, ...
Hit rate with four direct-mapped 2-byte cache lines?

With eight 2-byte cache lines?

With four 4-byte cache lines?

0O N OO UV A W N PO

e e
o U b W N - O O

NN R R
= O W 00

24

Misses
Cache misses: classification

The line is being referenced for the first time
e Cold (aka Compulsory) Miss

The line was in the cache, but has been evicted...

... because some other access with the same index
* Conflict Miss

... because the cache is too small

* j.e. the working set of program is larger than the
cache

* Capacity Miss

25

Avoiding Misses
Q: How to avoid...

Cold Misses

e Unavoidable? The data was never in the cache...
* Prefetching!

Capacity Misses
* Buy more SRAM
Conflict Misses

e Use a more flexible cache design

26

Three common designs
A given data block can be placed...

 ...inany cache line = Fully Associative
* ...in exactly one cache line = Direct Mapped
e ...in a small set of cache lines = Set Associative

27

A Simple Fully Associative Cache

Using byte addresses in this example! Addr Bus =5 bits

Processor

b S1 < M[1]
b $2 < M[13]
b S3 <~ M[O0]
b S3 <~ M[6]
b S2 <~ M[5]
b S2 <~ M[6]
b $2 < M[10]
b S2 <~ M[12]

Fully Associative
Cache

Hits: Misses:

Memory

coNO UL B WNPEFEO

\o)

f

10
11
12
13
14
15
16

101

103
107
109
113
127
131
137
139
149
151
157
163
167
173
179
181

t

}

}

}

}

}

i

Fully Associative Cache (Reading)

® Tag Qffset
V Tag Block
e °? °? °?
= >\, line select /
- 64bytes
\ word select /<—
-T 32bits
hit?

data

29

Fully Associative Cache Size

Tag Qffset

m bit offset, 2" cache lines
Q: How big is cache (data only)?
Q: How much SRAM needed (data + overhead)?

Fully-associative reduces conflict misses...

... assuming good eviction strategy
Mem access trace: 0, 16,1, 17, 2, 18, 3, 19, 4, 20, ...
Hit rate with four fully-associative 2-byte cache lines?

O 0N O Ul b W N RL|O

e e
o U A W N - O

NN R R
= O W 00

31

... but large block size can still reduce hit rate
vector add trace: O, 100, 200, 1, 101, 201, 2, 202, ...
Hit rate with four fully-associative 2-byte cache lines?

With two fully-associative 4-byte cache lines?

32

Misses
Cache misses: classification

Cold (aka Compulsory)

* The line is being referenced for the first time
Capacity

* The line was evicted because the cache was too small

* i.e. the working set of program is larger than the
cache

Conflict

* The line was evicted because of another access
whose index conflicted

33

Summary
Caching assumptions

* small working set: 90/10 rule
e can predict future: spatial & temporal locality

Benefits
* big & fast memory built from (big & slow) + (small & fast)
Tradeoffs:
associativity, line size, hit cost, miss penalty, hit
rate
* Fully Associative = higher hit cost, higher hit rate
 Larger block size = lower hit cost, higher miss penalty

Next up: other designs; writing to caches

34

