Caches

Kevin Walsh
CS 3410, Spring 2010
Computer Science
Cornell University

CPU clock rates ~0.2ns – 2ns (5GHz-500MHz)

Technology	Capacity	\$/GB	Latency
Tape	1 TB	\$.17	100s of seconds
Disk	2 TB	\$.03	Millions of cycles (ms)
SSD (Flash)	128 GB	\$2	Thousands of cycles (us)
DRAM	8 GB	\$10	50-300 cycles (10s of ns)
SRAM off-chip	8 MB	\$4000	5-15 cycles (few ns)
SRAM on-chip	256 KB	???	1-3 cycles (ns)

Others: eDRAM aka 1-T SRAM, FeRAM, CD, DVD, ...

Q: Can we create illusion of cheap + large + fast?

These are rough numbers: mileage may vary for latest/greatest Caches usually made of SRAM (or eDRAM)

Memory closer to processor

- small & fast
- stores active data

Memory farther from processor

- big & slow
- stores inactive data

Assumption: Most data is not active.

Q: How to decide what is active?

A: Some committee decides

A: Programmer decides

A: Compiler decides

A: OS decides at run-time

A: Hardware decides at run-time

Q: What is "active" data?

If Mem[x] is was accessed *recently*...

- ... then Mem[x] is likely to be accessed soon
 - Exploit temporal locality:

- ... then $Mem[x \pm \varepsilon]$ is likely to be accessed soon
 - Exploit spatial locality:

Memory trace int n = 4; 0x7c9a2b18 int $k[] = \{ 3, 14, 0, 10 \};$ 0x7c9a2b19 0x7c9a2b1a 0x7c9a2b1b int fib(int i) { 0x7c9a2b1c if (i <= 2) return i; 0x7c9a2b1d 0x7c9a2b1e else return fib(i-1)+fib(i-2); 0x7c9a2b1f 0x7c9a2b20 0x7c9a2b21 0x7c9a2b22 int main(int ac, char **av) { 0x7c9a2b23 for (int i = 0; i < n; i++) { 0x7c9a2b28 printi(fib(k[i])); 0x7c9a2b2c prints("\n"); 0x0040030c 0x00400310 0x7c9a2b04 0x00400314 0x7c9a2b00 0x00400318 0x0040031c

• • •

Memory closer to processor is fast but small

- usually stores subset of memory farther away
 - "strictly inclusive"

- strictly exclusive
- mostly inclusive
- Transfer whole blocks (cache lines):

4kb: disk ↔ ram

256b: ram \leftrightarrow L2

64b: $L2 \leftrightarrow L1$

Processor tries to access Mem[x]

Check: is block containing Mem[x] in the cache?

- Yes: cache hit
 - return requested data from cache line
- No: cache miss
 - read block from memory (or lower level cache)
 - (evict an existing cache line to make room)
 - place new block in cache
 - return requested data
 - → and stall the pipeline while all of this happens

Cache has to be fast and dense

- Gain speed by performing lookups in parallel
 - but requires die real estate for lookup logic
- Reduce lookup logic by limiting where in the cache a block might be placed
 - but might reduce cache effectiveness

A given data block can be placed...

- ... in any cache line \rightarrow Fully Associative
- ... in exactly one cache line → Direct Mapped
- ... in a small set of cache lines \rightarrow Set Associative

Direct Mapped Cache

- Each block number mapped to a single cache line index
- Simplest hardware

line 0		
line 1		

13

Direct Mapped Cache

- Each block number mapped to a single cache line index
- Simplest hardware

line 0	
line 1	
line 2	
line 3	

0x000000	
0x000004	
800000x0	
0x00000c	
0x000010	
0x000014	
0x000018	
0x00001c	
0x000020	
0x000024	
0x000028	
0x00002c	
0x000030	
0x000034	
0x000038	
0x00003c	
0x000040	
0x000044	
0x000048	14

Assume sixteen 64-byte cache lines 0x7FFF3D4D

= 0111 1111 1111 1111 0011 1101 0100 1101

Need meta-data for each cache line:

- valid bit: is the cache line non-empty?
- tag: which block is stored in this line (if valid)
- Q: how to check if X is in the cache?
- Q: how to clear a cache line?

Using byte addresses in this example! Addr Bus = 5 bits

Tag Index Offset

Tag Index Offset

n bit index, m bit offset

Q: How big is cache (data only)?

Q: How much SRAM needed (data + overhead)?

Cache Performance (very simplified):

L1 (SRAM): 512 x 64 byte cache lines, direct mapped

Data cost: 3 cycle per word access

Lookup cost: 2 cycle

Mem (DRAM): 4GB

Data cost: 50 cycle per word, plus 3 cycle per consecutive word

Performance depends on:

Access time for hit, miss penalty, hit rate

Cache misses: classification

The line is being referenced for the first time

Cold (aka Compulsory) Miss

The line was in the cache, but has been evicted

Q: How to avoid...

Cold Misses

- Unavoidable? The data was never in the cache...
- Prefetching!

Other Misses

- Buy more SRAM
- Use a more flexible cache design

Bigger cache doesn't always help...

Mem access trace: 0, 16, 1, 17, 2, 18, 3, 19, 4, ...

Hit rate with four direct-mapped 2-byte cache lines?

With eight 2-byte cache lines?

With four 4-byte cache lines?

Cache misses: classification

The line is being referenced for the first time

Cold (aka Compulsory) Miss

The line was in the cache, but has been evicted...

- ... because some other access with the same index
 - Conflict Miss
- ... because the cache is too small
 - i.e. the *working set* of program is larger than the cache
 - Capacity Miss

Q: How to avoid...

Cold Misses

- Unavoidable? The data was never in the cache...
- Prefetching!

Capacity Misses

Buy more SRAM

Conflict Misses

Use a more flexible cache design

A given data block can be placed...

- ... in any cache line \rightarrow Fully Associative
- ... in exactly one cache line → Direct Mapped
- ... in a small set of cache lines → Set Associative

Using byte addresses in this example! Addr Bus = 5 bits

Tag Offset

m bit offset, 2^n cache lines

Q: How big is cache (data only)?

Q: How much SRAM needed (data + overhead)?

Fully-associative reduces conflict misses...

... assuming good eviction strategy

Mem access trace: 0, 16, 1, 17, 2, 18, 3, 19, 4, 20, ...

Hit rate with four fully-associative 2-byte cache lines?

... but large block size can still reduce hit rate vector add trace: 0, 100, 200, 1, 101, 201, 2, 202, ... Hit rate with four fully-associative 2-byte cache lines?

With two fully-associative 4-byte cache lines?

Cache misses: classification

Cold (aka Compulsory)

The line is being referenced for the first time

Capacity

- The line was evicted because the cache was too small
- i.e. the *working set* of program is larger than the cache

Conflict

 The line was evicted because of another access whose index conflicted

Caching assumptions

- small working set: 90/10 rule
- can predict future: spatial & temporal locality

Benefits

big & fast memory built from (big & slow) + (small & fast)

Tradeoffs:

associativity, line size, hit cost, miss penalty, hit rate

- Fully Associative -> higher hit cost, higher hit rate
- Larger block size

 lower hit cost, higher miss penalty

Next up: other designs; writing to caches