Pipeline Hazards

Hakim Weatherspoon
CS 3410, Spring 2011

Computer Science
Cornell University

See P&H Appendix 4.7

Announcements
PA1 available: mini-MIPS processor

PA1 due next Friday
Work in pairs
Use your resources

* FAQ, class notes, book, Sections, office hours, newsgroup,
CSUGLab

HW1 graded

e Max: 10; Median: 9; Mean: 8.3; Stddev: 1.8
* Great job!
* Regrade policy
— Submit written request to lead TA, lead TA will pick a different grader

— Submit another written request, lead TA will regrade directly
— Submit yet another written request for professor to regrade.

Announcements

Prelims:
* Thursday, March 10™ in class
* Thursday, April 28t Evening

Late Policy

1) Each person has a total of four “slip days”

2) For projects, slip days are deducted from all partners

3) 10% deducted per day late after slip days are exhausted

Goals for Today

Data Hazards
 Data dependencies

* Problem, detection, and solutions
— (delaying, stalling, forwarding, bypass, etc)

 Forwarding unit
e Hazard detection unit

Next time

* Control Hazards
What is the next instruction to execute if
a branch is taken? Not taken?

add r3, r1, r2

sub r5, r3, r4

lw r6, 4(r3)

orr5,r3,r5

sw r6, 12(r3)

Broken Example

\4

Clock cycle
1 2 3 4 5 6 7 8 9 R
iF {1 (>>} MEMH-WB
IF 1] ID @' MEIV{' WB
F 1D b-‘@rws
F it (>>r EM{WB
H 1o MEMHHWB

What Can Go Wrong?

Data Hazards
 register file reads occur in stage 2 (ID)
* register file writes occur in stage 5 (WB)

* next instructions may read values about to be written
How to detect? Logic in ID stage:

stall = (ID.rA =0 && (ID.rA == EX.rD ||
ID.rA==M.rD ||
ID.rA == WB.rD))

|| (same for rB)

Detecting Data Hazards

addr3,rl, r2
subr5,r3, r5
orr6,r3,r4

add r6, r3, r8

inst

!
PC+4

IF/ID

>

>ra AL
D
B> ool
Ra Rb
T 1 EL,
detect) | ¥
hazard/ =
=
o
(a
@)
ID/EX

addr

out

mem
o o
oc oc
o o
@ @
EX/MEM MEM/WB

7

Resolving Data Hazards
What to do if data hazard detected?

Stalling

Clock cycle
1 2 3 4

addr3,rl, r2

sub r5, r3, r5

orre, r3,r4

add r6, r3, r8

inst

mem P>

PC

inst

Forwarding Datapath

Tt

>

AP A
> D
> rD Bi—1{B
rA rB
&
=
N ”Op‘:D~ 8

J

o

data
mem

<

Op || WE|] Rd

Op || WE|] Rd

10

Stalling

How to stall an instruction in ID stage

* prevent IF/ID pipeline register update
— stalls the ID stage instruction

e convert ID stage instr into nop for later stages
— innocuous “bubble” passes through pipeline

* prevent PC update
— stalls the next (IF stage) instruction

11

addr3,rl, r2

sub r5, r3, r5

orre, r3,r4

add r6, r3, r8

1

Forwarding

Clock cycle
2

3

4

5

12

addr3,rl, r2

sub r5, r3, rd

lw r6, 4(r3)

orr5,r3,r5

sw r6, 12(r3)

1

Forwarding

Clock cycle
2

3

4

5

13

Forwarding

A >A >
D > D l >D—>\
inst B—IB—
mem data

Forward correct value from? to?
1. ALU output: too late in cycle? a) ID (just after register file)

2. EX/MEM.D pipeline register — maybe pointless?

(output from ALU) b) EX, just after ID/EX.A and
3. WB data value (output from ID/EX.B are read

ALU or memory) c) MEM, just after EX/MEM.B
4. MEM output: too late in cycle, is read: on critical path

on critical path
14

Forwarding Path 1

A

B

>

>

J

data
mem

> D
inst
mem
addr4,rl, r2
nop

subr6, r4, rl

15

WB to EX Bypass

WB to EX Bypass
 EX needs value being written by WB

Resolve:
Add bypass from WB final value to start of EX
Detect:

16

—>

—>

AN

)

Forwarding Path 2

B

7

data
mem

> D
inst
mem
addr4, rl, r2

subr6, r4, rl

17

MEM to EX Bypass

MEM to EX Bypass
 EX needs ALU result that is still in MEM stage

Resolve:
Add a bypass from EX/MEM.D to start of EX
Detect:

18

Forwarding Datapath

inst
mem

o

data

>
mem

<

Ra || Rb

MC|| WE]| Rd

MC|| WE]| Rd

19

Tricky Example

inst

mem

addrl, rl, r2

SUBrl, rl, r3

ORrl, r4,rl

>
> -
, I
data
—>
> mem

20

More Data Hazards

A —>
inst Bl
mem R data
> mem
addr4, rl, r2
nop
nop
sub r6, r4, rl

\ 4

1

Register File Bypass

Register File Bypass
* Reading a value that is currently being written

Detect:
((Ra == MEM/WB.Rd) or (Rb == MEM/WB.Rd))
and (WB is writing a register)
Resolve:
Add a bypass around register file (WB to ID)

Better: (Hack) just negate register file clock
— writes happen at end of first half of each clock cycle
— reads happen during second half of each clock cycle

22

Quiz

Find all hazards, and say how they are resolved:

add r3, rl, r2

sub r3, r2, rl
hand r4, r3, ril
or ro, r3, r4
xor rl, r4, r3

sb r4, 1(ro)

Memory Load Data Hazard

]

data

>
mem

D
inst
mem
lw r4, 20(r8)

sub r6, r4, rl

v

24

Resolving Memory Load Hazard

Load Data Hazard
* Value not available until WB stage
* So: next instruction can’t proceed if hazard detected

Resolution:
e MIPS 2000/3000: one delay slot

— ISA says results of loads are not available until one cycle later
— Assembler inserts nop, or reorders to fill delay slot

e MIPS 4000 onwards: stall

— But really, programmer/compiler reorders to avoid stalling in
the load delay slot

25

add
nand

add
lw

SW

r3,
r5,

r2,
ro,
ro,

Quiz 2
rl, r2
r3, r4d
ré, r3
24(r3)
12(r2)

26

Data Hazard Recap

Delay Slot(s)
* Modify ISA to match implementation

Stall

* Pause current and all subsequent instructions

Forward/Bypass
* Try to steal correct value from elsewhere in pipeline
* Otherwise, fall back to stalling or require a delay slot

Tradeoffs?

27

More Hazards

inst
mem N

-

HT

data

> mem

PC
A
e—
<—
<—
<—

beqrl, r2, L

add r3, rO, r3

sub r5, r4, r6

L:orr3,r2,r4d

28

More Hazards

inst
mem N

-

HT

data

> mem

PC
A
e—
<—
<—
<—

beqrl, r2, L

add r3, rO, r3

sub r5, r4, r6

L:orr3,r2,r4d

29

Control Hazards

Control Hazards
* instructions are fetched in stage 1 (IF)
* branch and jump decisions occur in stage 3 (EX)
* i.e. next PCis not known until 2 cycles after branch/jump

Delay Slot

* |SA says N instructions after branch/jump always executed
— MIPS has 1 branch delay slot

Stall (+ Zap)
* prevent PC update

 clear IF/ID pipeline register
— instruction just fetched might be wrong one, so convert to nop

* allow branch to continue into EX stage

30

Delay Slot

inst N

A
mem|f | Ly

:

PC

y Y
—
< decide
< branc
<

data

mem

beqrl, r2, L

orir2,r0,1

L:orr3,rl, rd

v

31

Control Hazards: Speculative Execution

Control Hazards
* instructions are fetched in stage 1 (IF)
* branch and jump decisions occur in stage 3 (EX)
* i.e. next PC not known until 2 cycles after branch/jump

Stall
Delay Slot

Speculative Execution

e Guess direction of the branch

— Allow instructions to move through pipeline
— Zap them later if wrong guess

e Useful for long pipelines

32

Loops

Branch Prediction

Pipelining: What Could Possibly Go
Wrong?

Data hazards
* register file reads occur in stage 2 (IF)
 register file writes occur in stage 5 (WB)
* next instructions may read values soon to be written

Control hazards

* branch instruction may change the PC in stage 3 (EX)
* next instructions have already started executing

Structural hazards

* resource contention
e so far: impossible because of ISA and pipeline design

35

