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Announcements
PA1 available: mini-MIPS processor

PA1 due next Friday
Work in pairs

Use your iesources v

* FAQ, class notes, book, Sections, office hours, newsgroup,
CSUGLab

HW1 graded

e Max: 10; Median: 9; Mean: 8.3; Stddev: 1.8
* Great job!
* Regrade policy
— Submit written request to lead TA, lead TA will pick a different grader

— Submit another written request, lead TA will regrade directly
— Submit yet another written request for professor to regrade.



Announcements

Prelims:
* Thursday, March 10™ in class
* Thursday, April 28t Evening

Late Policy

1) Each person has a total of four “slip days”

2) For projects, slip days are deducted from all partners

3) 10% deducted per day late after slip days are exhausted



Goals for Today

Data Hazards
 Data dependencies

* Problem, detection, and solutions
— (delaying, stalling, forwarding, bypass, etc)

 Forwarding unit
e Hazard detection unit

Next time

* Control Hazards
What is the next instruction to execute if
a branch is taken? Not taken?



Broken Example
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What Can Go Wrong?

Data Hazards
 register file reads occur in stage 2 (ID)
* register file writes occur in stage 5 (WB)

* next instructions may read values about to be written

How to detect? Logic in ID stage:
stall = (ID.rA =0 && (ID.rA == EX.rD ||

- ID.rA == M.rD | |
L/’ o L NR—
D.ch ID.rA == WB.rD))

|| (same for rB)



Detecting Data Hazards
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Resolving Data Hazards
What to do if data hazard detected?
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= 10

add@ rl, r2

3220

sub r5, r3, r5
orre, r3,r4

add r6, r3, r8

Stalling
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Stalling

How to stall an instruction in ID stage

* prevent IF/ID pipeline register update
— stalls the ID stage instruction

e convert ID stage instr into nop for later stages
— innocuous “bubble” passes through pipeline 0("'550/ ?A

al(
* prevent PC update Conti,(
— stalls the next (IF stage) instruction Y, L
W cess o

hem w
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addr3,rl, r2

sub r5, r3, r5

orre, r3,r4

add r6, r3, r8

Forwarding
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* orr5,r3, r5

sw re, 12(r3)

Forwarding
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Forwarding
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inst BI—IB— l
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Forward correct value from? to?
1. ALU output: too late in cycle? a) ID (just after register file)

2. EX/MEM.D pipeline register — maybe pointless?

(output from ALU) b) EX, just after ID/EX.A and
3. WB data value (output from ID/EX.B are read

ALU or memory) c) MEM, just after EX/MEM.B
4. MEM output: too late in cycle, is read: on critical path

on critical path
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WB to EX Bypass
= yp

WB to EX Bypass
 EX needs value being written by WB

Resolve:
Add bypass from WB final value to start of EX
Detect:
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MEM to EX Bypass

MEM to EX Bypass
 EX needs ALU result that is still in MEM stage

Resolve:
Add a bypass from EX/MEM.D to start of EX
Detect:
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Forwarding Datapath
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More Data Hazards




Register File Bypass

Register File Bypass
* Reading a value that is currently being written

Detect:

((Ra == MEM/WB.Rd) or (Rb == MEM/WB.Rd))
and (WB is writing a register)

Resolve:
Add a bypass around register file (WB to ID)
Better: (Hack) just negate register file clock

— writes happen at end of first half of each clock cyclef
— reads happen during second half of each clock cycle
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Quiz

Find all hazards, and say how they are resolved:

add r3, rl, r2
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Memory Load Data Hazard
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Resolving Memory Load Hazard

Load Data Hazard
* Value not available until WB stage
* So: next instruction can’t proceed if hazard detected

Resolution:
e MIPS 2000/3000: one delay slot

— ISA says results of loads are not available until one cycle later
— Assembler inserts nop, or reorders to fill delay slot

e MIPS 4000 onwards: stall

— But really, programmer/compiler_reorders to avoid stalling in
the load delay slot
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Data Hazard Recap

Delay Slot(s)
* Modify ISA to match implementation

Stall

* Pause current and all subsequent instructions

Forward/Bypass
* Try to steal correct value from elsewhere in pipeline
* Otherwise, fall back to stalling or require a delay slot

Tradeoffs?
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More Hazards
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More Hazards
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Control Hazards

Control Hazards
* instructions are fetched in stage 1 (IF)
* branch and jump decisions occur in stage 3 (EX)
* i.e. next PCis not known until 2 cycles after branch/jump

Delay Slot

* |SA says N instructions after branch/jump always executed
— MIPS has 1 branch delay slot

Stall (+ Zap)
* prevent PC update

 clear IF/ID pipeline register
— instruction just fetched might be wrong one, so convert to nop

* allow branch to continue into EX stage

30



Delay Slot
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Control Hazards: Speculative Execution

Control Hazards
* instructions are fetched in stage 1 (IF)
* branch and jump decisions occur in stage 3 (EX)
* i.e. next PC not known until 2 cycles after branch/jump

Stall
Delay Slot

Speculative Execution

e Guess direction of the branch

— Allow instructions to move through pipeline
— Zap them later if wrong guess

e Useful for long pipelines
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Loops



Branch Prediction



Pipelining: What Could Possibly Go
Wrong?

Data hazards
* register file reads occur in stage 2 (IF)
 register file writes occur in stage 5 (WB)
* next instructions may read values soon to be written

Control hazards

* branch instruction may change the PC in stage 3 (EX)
* next instructions have already started executing

Structural hazards

* resource contention
e so far: impossible because of ISA and pipeline design
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