Pipeline Hazards

Hakim Weatherspoon
CS 3410, Spring 2011

Computer Science
Cornell University

See P&H Appendix 4.7

Announcements
PA1 available: mini-MIPS processor

PA1 due next Friday
Work in pairs

Use your iesources v

* FAQ, class notes, book, Sections, office hours, newsgroup,
CSUGLab

HW1 graded

e Max: 10; Median: 9; Mean: 8.3; Stddev: 1.8
* Great job!
* Regrade policy
— Submit written request to lead TA, lead TA will pick a different grader

— Submit another written request, lead TA will regrade directly
— Submit yet another written request for professor to regrade.

Announcements

Prelims:
* Thursday, March 10™ in class
* Thursday, April 28t Evening

Late Policy

1) Each person has a total of four “slip days”

2) For projects, slip days are deducted from all partners

3) 10% deducted per day late after slip days are exhausted

Goals for Today

Data Hazards
 Data dependencies

* Problem, detection, and solutions
— (delaying, stalling, forwarding, bypass, etc)

 Forwarding unit
e Hazard detection unit

Next time

* Control Hazards
What is the next instruction to execute if
a branch is taken? Not taken?

Broken Example

'O
add@ rl, r2

orrb5 @rS

SW rb, 12(@
\

Clock cycle _ AN
1 2 3 4 5 6 7/ 8 9
&t FF3-30 >
F H4 1D
IF | WB
IF /1D EMwe
Hd 1 MEMH-WB

What Can Go Wrong?

Data Hazards
 register file reads occur in stage 2 (ID)
* register file writes occur in stage 5 (WB)

* next instructions may read values about to be written

How to detect? Logic in ID stage:
stall = (ID.rA =0 && (ID.rA == EX.rD ||

- ID.rA == M.rD | |
L/’ o L NR—
D.ch ID.rA == WB.rD))

|| (same for rB)

Detecting Data Hazards

addr3,rl, r2
subr5,r3, r5
orr6,r3,r4

add r6, r3, r8

inst

!
PC+4

TTTe

IF/ID

Ra Rb

—>

<

>

W

detect
hazard #°

imm

addr

out

mem

Rd

}Ar?qnx—

OP

ID/EX

Rd

\
=h

oc

(ol

@

OP

EX/MEM MEM/WB

7

Resolving Data Hazards
What to do if data hazard detected?

Wml//s/a/(

(Pause €he cqeron T ing
404 5}1/5(;"""71__/4;

[‘.coroler /ogf

For wn//ﬂypa s
S(e‘!—[CZJ-C Vﬂ/q.()

4“ /;-om Some /a/

8

= 10

add@ rl, r2

3220

sub r5, r3, r5
orre, r3,r4

add r6, r3, r8

Stalling

[F 1D |€x |1 | WP
rBG)OL\
IF 10 10 1D 1o |
(FI(F|/F|IF| D

IF

inst

mem P>

PC

Tt

inst

Forwarding Datapath

A—

A

>

/staII—J

J

Op || WE|] Rd

<O

NoP

o

Op || WE|] Rd

data
mem

<

Op || WE|] Rd

ALD

10

Stalling

How to stall an instruction in ID stage

* prevent IF/ID pipeline register update
— stalls the ID stage instruction

e convert ID stage instr into nop for later stages
— innocuous “bubble” passes through pipeline 0("'550/ ?A

al(
* prevent PC update Conti,(
— stalls the next (IF stage) instruction Y, L
W cess o

hem w

11

addr3,rl, r2

sub r5, r3, r5

orre, r3,r4

add r6, r3, r8

Forwarding

Clock cycle
1 2 3 4

5 6

7

8

/F@]w B&{ % H‘g’w

JE 1D tex

IF |15

.46)(

[F

/DLL«
I,

* orr5,r3, r5

sw re, 12(r3)

Forwarding

U s e s 6 1 s
|F
IF
IF 11D | Ex| 1 (w2
I[-| 1D | MG w3 (p
IF ey e m | wo

v

Forwarding

A—1A >
> D |® @ > @D @ >D—>\

inst BI—IB— l

mem)@ data

@ EEEEN B[] mem |V|_>/

Forward correct value from? to?
1. ALU output: too late in cycle? a) ID (just after register file)

2. EX/MEM.D pipeline register — maybe pointless?

(output from ALU) b) EX, just after ID/EX.A and
3. WB data value (output from ID/EX.B are read

ALU or memory) c) MEM, just after EX/MEM.B
4. MEM output: too late in cycle, is read: on critical path

on critical path

14

Forww
A
0, @ ﬁ
>0 > f‘» AN 16
inst Bl _>} r]
mem data
- >) mem _>/
Sub noP adoA_
addré, r1,r2| | £ /'D E)’ M L/(?)
nop /F 10 E)(
subr6, r4, rl }F /D E)(

WB to EX Bypass
= yp

WB to EX Bypass
 EX needs value being written by WB

Resolve:
Add bypass from WB final value to start of EX
Detect:

(6% Ra = WORAL 50 BL.Rb= wane
an - WO.WE and ¥R Z (5

W

16

inst
mem

addr4,rl, r2

subr6, r4, rl

data

a6 O g
[F1ID|Ex |t | W2
|F|'P & | /1

17

MEM to EX Bypass

MEM to EX Bypass
 EX needs ALU result that is still in MEM stage

Resolve:
Add a bypass from EX/MEM.D to start of EX
Detect:

((E,,,RQ"—"- /‘kao'(-’) cr (EK&{= ﬂo.,,fd

an/. (/70:. WE A MMewm, RL 70) y e
‘o

20

18

Forwarding Datapath

inst
mem

data

>
mem

<

Ra || Rb

MC || WE]| Rd

19

inst

mem data

> !5&6 mem
ém e 2l

SUBEDD) r3 e (1o A\’E/Q M D&-/@

ORrl,r s /,Oéy

Aol
b »oP nof @
C, Z
AT - AN
i id data
il > | mem[/
addfdri, 2| JE 1D | e | 21 | W)
nop |~
nop /1~
sub r6, rl /P [:D

More Data Hazards

Register File Bypass

Register File Bypass
* Reading a value that is currently being written

Detect:

((Ra == MEM/WB.Rd) or (Rb == MEM/WB.Rd))
and (WB is writing a register)

Resolve:
Add a bypass around register file (WB to ID)
Better: (Hack) just negate register file clock

— writes happen at end of first half of each clock cyclef
— reads happen during second half of each clock cycle

22

Quiz

Find all hazards, and say how they are resolved:

add r3, rl, r2

23

Memory Load Data Hazard

mem data

AT >> —® >
inst ’ Bl | —>} l

>
> mem

Iw ré, 20(r8) /FDIA)4]E; M Wl

0'7/2(47’/
sub r6, r4, rl IF)] 'DB - U 7

v

Resolving Memory Load Hazard

Load Data Hazard
* Value not available until WB stage
* So: next instruction can’t proceed if hazard detected

Resolution:
e MIPS 2000/3000: one delay slot

— ISA says results of loads are not available until one cycle later
— Assembler inserts nop, or reorders to fill delay slot

e MIPS 4000 onwards: stall

— But really, programmer/compiler_reorders to avoid stalling in
the load delay slot

25

add
nand

add

Data Hazard Recap

Delay Slot(s)
* Modify ISA to match implementation

Stall

* Pause current and all subsequent instructions

Forward/Bypass
* Try to steal correct value from elsewhere in pipeline
* Otherwise, fall back to stalling or require a delay slot

Tradeoffs?

27

More Hazards

inst
mem N

-

HT

data

> mem

PC
A
e—
<—
<—
<—

beqrl, r2, L

add r3, rO, r3

sub r5, r4, r6

L:orr3,r2,r4d

28

More Hazards

inst
mem N

-

HT

data

> mem

PC
A
e—
<—
<—
<—

beqrl, r2, L

add r3, rO, r3

sub r5, r4, r6

L:orr3,r2,r4d

29

Control Hazards

Control Hazards
* instructions are fetched in stage 1 (IF)
* branch and jump decisions occur in stage 3 (EX)
* i.e. next PCis not known until 2 cycles after branch/jump

Delay Slot

* |SA says N instructions after branch/jump always executed
— MIPS has 1 branch delay slot

Stall (+ Zap)
* prevent PC update

 clear IF/ID pipeline register
— instruction just fetched might be wrong one, so convert to nop

* allow branch to continue into EX stage

30

Delay Slot

inst N

A
mem|f | Ly

:

PC

y Y
—
< decide
< branc
<

data

mem

beqrl, r2, L

orir2,r0,1

L:orr3,rl, rd

v

31

Control Hazards: Speculative Execution

Control Hazards
* instructions are fetched in stage 1 (IF)
* branch and jump decisions occur in stage 3 (EX)
* i.e. next PC not known until 2 cycles after branch/jump

Stall
Delay Slot

Speculative Execution

e Guess direction of the branch

— Allow instructions to move through pipeline
— Zap them later if wrong guess

e Useful for long pipelines

32

Loops

Branch Prediction

Pipelining: What Could Possibly Go
Wrong?

Data hazards
* register file reads occur in stage 2 (IF)
 register file writes occur in stage 5 (WB)
* next instructions may read values soon to be written

Control hazards

* branch instruction may change the PC in stage 3 (EX)
* next instructions have already started executing

Structural hazards

* resource contention
e so far: impossible because of ISA and pipeline design

35

