CS3410
Guest Lecture

A Simple CPU: remaining branch instructions
CPU Performance
Pipelined CPU

Tudor Marian

Memory Layout

Examples /Iittle endian): 0x00000000 —
0x00000001 -

#r5 contains 5 (0x00000005) @‘ 0x00000002__
0X00000003 _
sb r5, 2(r0) 0x00000004
b r6, 2(r0) Ox00000005
OXx00000006
0Xx00000007

—_ PX00000008
5, 8(r @

0 | U |oxeo000009

~

E =~ O | 0 |oxooe0000a
S, 11(@ % | 0 pxo000000b

OXFFFFffff 2

Conditional Jumgp

oegdaberes

%p 1,'! rs subop

t Control Flow: More Branches
CONt.

\
offset ﬁ@;;]/
16 bits —

6 bits 5 bits 5 bits

signed

offsets
op subop mnemonic description
Ox1 OxO BLTZ rs, offset | if R[rs] < 0 then PC = PC+4+ (offset<<2)
Ox1 Y Ox1 BGEZ rs, offset | if R[rs] 2 0 then PC = PC+4+ (offset<<2)
Ox6 0OxO BLEZrs, offset | if R[rs] £0 then PC = PC+4+ (offset<<2)
0x7 OxO BGTZ rs, offset if R[rs] > 0 then PC = PC+4+ (offset<<2)

Absolute Jump

Prog. |inst ! ’\l
Mem R(?g. }A‘LU N
5| File ‘ _)I/
s T
addr
C ' !
- (1 Data [
»ﬁ_ﬁ' ! I\/llrem
L d\lf gt/) Could have
used ALU for
branch cmp

op subop mnemonic descri

x1 OxO BLTZ rs, offset ,hen PC £ PC+4t ‘

Ox1 | Ox1 BGEZ rs, offset | if R[rs] = 0 then PC = PC+4+ (offset<<2

. . r Fa YW oY NI~ __ _rc._. _ *FfF. T _ 7 o N 0oL . . ™A &S/ n . [_ccCc. 32 . .\

Function/procedure calls «~
I@@0@1%@@@@@@@1@@1@@@@11@@@@@@@1@|

op
6 bits

Op mnemonic

immediate

26 bits

description

Ox3 | JAL target

op mnhemonic

r31 = PC+8 (+8 due to branch delay slot)
PC = (PC+4)3, 55 || (target << 2)

description

Ox2 J target

PC = (PC+4)3; o4 | | (target << 2)

Absolute Jump

Prog. [inst
Mem
} | p
T
addr
PC Data [
offse Mem
:)
A gt/ t Could have
W used ALU for
link add
op mnemonic description
Ox3 JAL target r31 = h delay slot)
C=(PC+4);, 55 | | (target << 2)]

Performance

See: P&H 1.4

Design Goals

What to look for in a computer system?

* Correctness: negotiable?
* Cost

—purchase cost = f(silicon size = gate
count, economics)

—operating cost = f(energy, cooling)
—operating cost >= purchase cost

* Efficiency
@? f(tcansistor usage, voltage, wire
Sy, P

size, clock rate, ...)
—h&3t = f(power)
el Core i7 Bloomfield: 130 Watts
* AMD Turion: 35 Watts

-A9 Dual Core @800MHz: 0.4 Watt

* Performa

* Other: availability, size, greenness,
features, ...

How to measure performance?

GHz (b|II|ons of cycles per second)

G H'z— / _/_I/_ , ‘CHq_ — . ‘%ndmnsofmstrucmns per

MFLOPS (millions of floating point

C operations per second)
benchmarks (SPEC, TPC, ...)

I l f g —\ [0 \wvxgi / &
TS .
(ﬂ how long to finish my

roughput: how much work
finished per unit time

e e —— ?
H How Fast?
Prog. R)\

Mem Reg. ALU '/ y

| File &F? 160

PC { ~ 3 gates

control

* alu: pple carry+ some muxes

. Y2+ > = £3pdor >

* control: minimized for delay (~3 gates) 3 ‘ {8 — w £‘
. nsistors: 2 ns per gatg 8 "" + 'F ~
e Prog,. Memop s (as much as 8 gates) 1 ;
* register ﬁleé. ns acces}N"-r- 'IQ _é
* ignore wires, register setup time Sq' 'Q-’ 3 "" q -‘— / - Zl 4
Better: - |
* alu: 32 bit carry lookahead + some muxes All signals are stable

* next PC: 30 bit carry lookahead (~ 6 gates) 80 gates => clock period of at least 160 ns, max frequency ~6MHz
Better Still: Better:
. next PC: cheapest adder faster than 21 gate delays 21 gates => clock period of at least 42 ns, max frequency ~24MHz

10

Adder Performance

32 Bit Adder Design Space Time

2-Way Carry-Skip = 360 gates = 35 gate delays

4-Way Carry-Skip = 600 gates = 18 gate delays

Split Look-Ahead = 800 gates = 10 gate delays

11

Optimization: Su

Critical Path

* Longest path from a register output to a register input
 Determines minimum cycle, maximum clock frequency

Strategy 1 (we just employed)
e Optimize for delay on the critical path
e Optimize for size / power / simplicity elsewhere

S«'x»tsle Czjja

12

mmary

memory

Processor Clock Cycle

register
file

op mnemonic description

0x20 LB rd, offset(rs) R[rd] = sign_ext(Mem[offset+R][rs]])
0x23 LW rd, offset(rs) @D M[%ﬁg’m]]

Ox28 SB rd, offset(rs) Mem]offset+R[rs]] = R[rd]

Nvo h QW rd Affcoat(rc) MomlaffcatraiRIrell = RIrdl -

memory

Processor Clock Cycle

register
file

memory

I

op func mnemonic description
Ox0 0x08 JRrs PC = R][rs]
op mhemonic description
Ox2 J target PC=(PC+4),, 55 || (target<<2)

Multi-Cycle Instructions

Strategy 2
* Multiple cycles to complete a single instruction

E.g: Assume: |
* load/store: 100 ns —= @ ()

+ arithmetic{0 ns __v@ A = ’2,0/4742

bé mr>
Multi-Cycle CPU %Y ~

30 MHz (33 ns cycle) with

— 3 cycles per load/store
— 2 cycles per arithmetic
— 1 cycle per branch

aster than Single-Cych cphpyU?
(100 ns cycle) with

CPI

Instruction mix for some program P, assume:
* 25% load/store (3 cycles / instruction)
* 60% arithmetic (2 cycles / instruction)
* 15% branches (1 cycle / instruction)

Multi-Cycle perfoghgn e for Fﬂ:o%ram#P AN

3*25+2* 60+1*.15=2.1

average cycles per instruction (CPIl) = 2.1

800 MHz PIIl “faster” than 1 GHz P4 N 1S Mi ‘)<‘
16

Goal: Make Multi-Cycle @ 30 MHz CPU (15MIPS) run
2x faster by making arithmetic instructions faster,

B
Instruction mix (for P):

4 = R
e 25% load/store, CPI = 0.}> @3 0~-3v

-arithmEP, CPl =72 [L @-b l S
= RN 0
5% branches, @ _ 0 JH [,\Y- (s

. g
CPI’ 2*’ l \'30 l.ﬂ

Amdahl’s Law

Amdahl’s Law e »
Execution time after improvement = .
— <<
execution time affected by impw \
+ execution time unaffected
amount of improve@
Or:

Speedup is limited by popularity of improved feature

Corollary:
Make the common case fast

Caveat:
Law of diminishing returns

18

Pipelining

See: P&H Chapter 4.5

19

The Kids

Alice

Bob

They don’t always get along...

20

Glue

Paint

Py

The Instructions

N pieces, each built following same sequence:

23

Alice owns the room

Bob can enter when Alice is finished
Repeat for remaining tasks

No possibility for conflicts

24

/%-
Latency:

Throughput: | Yo ek /Lt L\M

Concurrency: |

Can we do better?

Design 2: Pipelined Design

Partition room into stages of a pipeline

X
3120408

Dave Carol Bob Alice
One person owns a stage at a time
4 stages
4 people working simultaneously
Everyone moves right in lockstep

26

> e A RO

Concurrency: 7.{—

|

!lllllL
v =)
@ ol

Throughput: E[| Hark /ﬂfm N

Concurrency: K‘I OO]

Latency: 4 X PO b = 61'\.9./)/7Lq/;j
l

Throughput:
Concurrency: Lf

29

Fadl
70 mim

x2f

5

5
O
B C
. 2o
>
O S
- o
m c
oc L\ O
- |-

\ 4
I

" Throughput:
Concurrency:

Pipeline Hazards

/Q:What if glue step of task 3 depends on output of ta@

S

v Latency:
" Throughput:
Concurrency:

32

Principle:
Throughput increased by parallel execution

Pipelining:

Resolve pipeline hazards

33

A Processor

o =
inst
memory register > |
file Al
N
— addr
=? <=0
PAC | > din dout B
contro cm
! offset 4 P memory
new target 4 .
Imm
pC —>] extend

34

in

new
pcC

tructgen

Fetch

register

file

control

A\ imm

InS{ruction

Decdde

rrrrrrrrrr

Basic Pipeline

Five stage “RISC” load-store architecture

1. Instruction fetch (IF)
— get instruction from memory, increment PC

2. Instruction Decode (ID)

= translatelnto control signals and read registers < (ﬁdj

3. Execute (EX)

— perform ALU operation, compute '|Hggébraggh Egréeg

4. Memory (MEM)
— access memory if needed

5. Writeback (WB)
— update register file

Swﬁ/%&

36

Pipelined Implementation

Break instructions across multiple clock cycles
(five, in this case)

Design a separate stage for the execution
performed during each clock cycle

Add Qipeline registers (flip-flops))to isolate signals
between different stages

Slides thanks to Kevin Walsh, Sally McKee, and Kavita Bala 3

