State & Finite State Machines

Hakim Weatherspoon
CS 3410, Spring 2011

Computer Science
Cornell University

See P&H Appendix C.7. C.8, C.10, C.11

Announcements

Make sure you are
Registered for class

Can access CMS

Have a Section you can go to
Have a project partner

Sections are on this week

HW 1 out later today
Due in one week, start early
Work alone

Use your resources
* Class notes, book, Sections, office hours, newsgroup, CSUGLab

Announcements

Check online syllabus/schedule

Slides and Reading for lectures

Office Hours

Homework and Programming Assignments

Prelims: Evening of Thursday, March 10 and April 28th

Schedule is subject to change

HW1 Correction:

Hint 1: Your ALU should use your adder and left shifter as components. But, as in class, your ALU should only use a single adder component
to implement both addition and subtraction. Similarly, your ALU should use only a single left shifter component to implement all of the shift

operations. For instance, ‘I'e:FE rlght shifting can be accomplished by transforming the inputs and outputs to your left shifter. You

will be penalized if your final ALU circuit uses more than one adder or left shifter. Of course, always strive to make your implementation

clear, but do not duplicate components in an effort to do so. 3

Goals for Today: Stateful Components

Until now is combinatorial logic

e Output is computed when inputs are present
e System has no internal state

* Nothing computed in the present can depend on what
happened in the past!

~—> Combinational #—> Qutputs
\ circuit \

Inputs

Need a way to record data
Need a way to build stateful circuits
Need a state-holding device

Finite State Machines

Unstalgle Devices

210 1
G

| /d\/
ek "3y

A

Bistable Devices
- Stable and unstable equilibria?

A B A Simple Device

Bistable Devices
- Stable and unstable equilibria?

A B A Simple Device

 |In stable state, A=B

>0 >
o]

B A B

- How do we change the state?

SR Latch

Set-Reset (SR) Latch g al-
Stores a value Q and its con"plement Q

Unclocked D Latch

Data (D) Latch

o)
O
= O || 0O

Q| Q
QY
O

(

Unclocked D Latch

Data (D) Latch

> Q plalaQ
R Q 0]o0 |1
111 |0

Data Latch
e Easier to use than an SR latch
* No possibility of entering an undefined state

When D changes, Q changes
— ... immediately (after a delay of 2 Ors and 2 NOTs)

Need to control when the output changes

10

D Latch with Clock

$ ¢

Level Sensitive D Latch
Clock high:

set/reset (according to D)
Clock low:

keep state (ignore D)

Clocks

Clock helps coordinate state changes
* Usually generated by an oscillating crystal
* Fixed period; frequency = 1/period

12

Edge-triggering

- Can design circuits to change on the rising or falling
edge

 Trigger on rising edge = positive edge-triggered ——

- Trigger on falling edge = negative edge-triggered

 Inputs must be stable just before the triggering edge

iInput

clock I\/ | X

Edge-Triggered D Flip-Flop
D Flip-Flop
Q - Edge-Triggered

D D Q F D
= — « Datais captured
Q when clock is high

cIk-T L QF L
{>OJ . Outputs change only

on falling edges

clk(-\ --- I_ﬁ

Ol O

Clock Disciplines

Level sensitive
e State changes when clock is high (or low)

Edge triggered

e State changes at clock edge

positive edge-triggered ‘
negative edge-triggered ‘

15

Registers

D0

Register

D flip-flops in parallel
- shared clock

- extra clocked inputs:

write_enable, reset, ...

_,Ja-bit| ,
reg

16

Metastability and Asynchronous Inputs

| O)?/’
@_DOX 1% 1& O
oolel

Clk

Metastability and Asynchronous Inputs
Q: What happens if input %anges near clock edge?

A: Google “Buridan’s Principle” by Leslie Lamport

18

An Example

Reset
Run l
)

WE R

— 1 32-bit |
reg

Clk

19

Clock Methodology

Clock Methodology
- Negative edge, synchronous

— Signals must be stable near falling clock edge

- Positive edge synchronous
- Asynchronous, multiple clocks, . ..

20

Finite State Machines

Finite State Machines

An electronic machine which has
e external inputs
e externally visible outputs

* internal state

Output and next state depend on
* inputs
* current state

Py

Abstract Model of FSM

Machine is
M=(S, 1 O,09)
S: Finite set of states
[Finite set of inputs
O: Finite set of outputs
0. State transition function

Next state depends on present input and
present state

23

Voting Machine

1111
mu
LED dec

m
>\mux /
\ 4
+
=
|

L\
\
W
N

reg

AN decoderl(3—to—8) / \ (/\/ ’

3

0o
o
4
0
0o
0
o)

)
8 o
0 ()
o

Automata Model

Finite State Machine

" Current
Q
Sz State Comb.
a0 Logic
o
Al Input——

* inputs from external world
e outputs to external world
internal state
 combinational logic

Output

Next State

25

FSM Example

input/output

Input: up or down
Output: on or off
States: A, B, C,or D

26

FSM Example Details

igiyiy.../040,0,...

Legend

@ :>
°<’°1 :>

Input: O=up or 1=down
Output: 1=on or 1=off

States: 00=A,

01=B, 10=C, or 11=D

27

Mealy Machine

General Case: Mealy Machine

" Current
2 State Comb. Output
> © > _
i’o Logic
Al Input—— Next State

Outputs and next state depend on both
current state and input

28

Moore Machine

Special Case: Moore Machine

~ | Current Comb.
3 State Logic Output
> 2 ¢
Q >/ Comb
A | Input—>_ Logic Next State

Outputs depend only on current state

29

Moore Machine Example

down

C@®-

e il »

down

Input: up or down down

Output: on or off
States: A, B, C,or D

30

Digital Door Lock

Digital Door Lock

Inputs:

- keycodes from keypad

- clock

Outputs:

- “unlock” signal

- display how many keys pressed so far

31

Door Lock: Inputs

Assumptions:
- signals are synchronized to clock

- Password is B-A-B

Meaning

@ (no key)
‘A’ pressed

= = O AR

JA
0
1
0

o> RN
= O O | W

‘B’ pressed

32

Door Lock: Outputs

Assumptions:
 High pulse on U unlocks door

LED
dec

33

Door Lock: Simplified State Diagram

o() o()

any

34

Door Lock: Simplified State Diagram

o() o()

any

Door Lock: Simplified State Diagram

o() o()

else else

36

Door Lock: Simplified State Diagram

Next State
Idle
G1
Bl
Gl
G2
B2
B2
G3

State Table Encoding

Door Lock: Implementation

Strategy:

(1) Draw a state diagram (e.g. Moore Machine)

(2) Write output and next-state tables

(3) Encode states, inputs, and outputs as bits

(4) Determine logic equations for next state and outputs_

Summary

We can now build interesting devices with sensors
* Using combinational logic

We can also store data values
 Stateful circuit elements (D Flip Flops, Registers, ...)
* Clock to synchronize state changes
e But be wary of asynchronous (un-clocked) inputs
* State Machines or Ad-Hoc Circuits

40

