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Demo Sign-Up:

* Will be posted outside my office after lecture today.

10 time s
24 time s
12 time s

ots on Wednesday, May 19
ots on Thursday, May 20
ots on Friday, May 21

CMS submission due:

e Afternoon of Friday, May 21



Moore’s Law introduced in 1965

Number of transistors that can be integrated on a
single die would double every 18 to 24 months (i.e.,
grow exponentially with time).

Amazingly visionary

2300 transistors, 1 MHz clock (Intel 4004) - 1971
16 Million transistors (Ultra Sparc lll)
42 Million transistors, 2 GHz clock (Intel Xeon) — 2001

55 Million transistors, 3 GHz, 130nm technology,
250mm?2 die (Intel Pentium 4) — 2004

290+ Million transistors, 3 GHz (Intel Core 2 Duo) —
2007
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Brief History

The dark ages (early-mid 1990’s), when there
were only frame buffers for normal PC’s.

Some accelerators were no more than a simple
chip that sped up linear interpolation along a
single span, so increasing fill rate.

This is where pipelines start for PC commodity
graphics, prior to Fall of 1999.

This part of the pipeline reaches the consumer
level with the introduction of the NVIDIA
GeForce256.

Hardware today is moving traditional
application processing (surface generation,
occlusion culling) into the graphics accelerator.
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FIGURE A.2.1 Historical PC. VGA controller drives graphics display from framebuffer memory. Copyright © 2009 Elsevier, Inc. All
rights reserved.
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Peak Performance

Faster than Moore’s Law

One-pixel polygons (¥*10M polygons @ 30Hz)

Slope ~2.4x/year
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NVidia Tesla Architecture
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Why are GPUs so fast?

Input Vertex Setup & Pixel Raster Operations/
Assembler er Rasterizer Output Merger

Stencil
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I Depth Render | |
I Z-Buffer Target |,
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! I

FIGURE A.3.1 Direct3D 10 graphics pipeline. Each logical pipeline stage maps to GPU hardware or to a GPU processor.
Programmable shader stages are blue, fixed-function blocks are white, and memory objects are grey. Each stage processes a vertex,
geometric primitive, or pixel in a streaming dataflow fashion. Copyright © 2009 Elsevier, Inc. All rights reserved.

Pipelined and parallel
Very, very parallel: 128 to 1000 cores
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Host CPU . Bridge . System Memory
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FIGURE A.2.5 Basic unified GPU architecture. Example GPU with 112 streaming processor (SP) cores organized in 14 streaming
multiprocessors (SMs); the cores are highly multithreaded. It has the basic Tesla architecture of an NVIDIA GeForce 8800. The
processors connect with four 64-bit-wide DRAM partitions via an interconnection network. Each SM has eight SP cores, two special
function units (SFUs), instruction and constant caches, a multithreaded instruction unit, and a shared memory. Copyright © 2009
Elsevier, Inc. All rights reserved.



i PUs

Can we use these for general computation?

Scientific Computing
e MATLAB codes

Convex hulls
Molecular Dynamics
Etc.

NVIDIA's answer:
Compute Unified Device Architecture (CUDA)

* MATLAB/Fortran/etc. 2 “C for CUDA” = GPU Codes
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AMDs Hybrid CPU/GPU

AMD’s Answer: Hybrid CPU/GPU

| Hyper-
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Cell Broadband Engine Processor
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Parallelism

Must exploit parallelism for performance
* Lots of parallelism in graphics applications
* Lots of parallelism in scientific computing

SIMD: single instruction, multiple data
* Perform same operation in parallel on many data items
e Data parallelism

MIMD: multiple instruction, multiple data
* Run separate programs in parallel (on different data)
e Task parallelism
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Where is the Market?
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151st St to US-69 S




Where to?

Smart Dust....




Security?

Smart Cards...
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Cryptography and security...

TPM 1.2

IBM 4758
Secure Cryptoprocessor
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Smart Dust

& Sensor Networks
Embedded

Computing
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Graphics
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Quantum
Cryptography CompUting?
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How useful is this class, in all seriousness, for a
computer scientist going into software
engineering, meaning not low-level stuff?

How much of computer architecture do software
engineers actually have to deal with?

What are the most important aspects of computer
architecture that a software engineer should
keep in mind while programming?
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These days, programs run on hardware...
... more than ever before

Google Chrome

- Operating Systems

- Multi-Core & Hyper-Threading

— Datapath Pipelines, Caches, MMUs, 1/0 & DMA
— Busses, Logic, & State machines

- Gates

— Transistors

—> Silicon

- Electrons

Why?
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CS 3110: Better concurrent programming

CS 4410: The Operating System!

CS 4450: Networking

CS 4620: Graphics

And many more...
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Thank youl!

If you want to make an apple pie from scratch, you must first
create the universe.
— Carl Sagan
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