RISC Pipeline

Kevin Walsh
CS 3410, Spring 2010
Computer Science
Cornell University

See: P&H Chapter 4.6

A Processor

memory

T

cmp

NV

alu

inst
register
file
offset control
\4 <—/
target
< | imm
\—> extend

memory

A Processor

memory register

file

memory

targets

Basic Pipeline

Five stage “RISC” load-store architecture

1. Instruction fetch (IF)
— get instruction from memory, increment PC

2. Instruction Decode (ID)
— translate opcode into control signals and read registers

3. Execute (EX)
— perform ALU operation, compute jump/branch targets

4. Memory (MEM)

— access memory if needed

5. Writeback (WB)

— update register file

Slides thanks to Sally McKee & Kavita Bala

Pipelined Implementat ion

Break instructions across multiple clock cycles
(five, in this case)

Design a separate stage for the execution
performed during each clock cycle

Add pipeline registers to isolate signals between
different stages

Pipelined Processor

>
memory register
file

compute
jump/branch
targets

IF/ID ID/EX EX/MEM MEM/WB

Stage 1: Instruction Fetch

Fetch a new instruction cycle
* Current PCis index to instruction memory
* Increment the PC at end of cycle (assume no branches for now)

Write values of interest to
 |nstruction bits (for later decoding)
 PC+4 (for later computing branch targets)

: : 1 WE
Instruction
memory
aAddr mc
1
. +\4 00 = read word (=

Rest of pipeline

Stage 2: Instruction Decode

On cycle:
* Read IF/ID pipeline register to get instruction bits
* Decode instruction, generate control signals
* Read from register file

Write values of interest to

e Control information, Rd index, immediates, offsets, ...
* Contents of Ra, Rb
 PC+4 (for computing branch targets later)

Stage 1: Instruction Fetch

INst
o
M
(@]
o)
o
M

WE
Rd
D

register
file B

Ra Rb

extend

PC+4

IF/ID

PC+4llimm

ctrl

ID/EX

Rest of pipeline

10

Stage 3: Execute

On cycle:
* Read ID/EX pipeline register to get values and control bits
* Perform ALU operation
 Compute targets (PC+4+offset, etc.) in case this is a branch
* Decide if jump/branch should be taken

Write values of interest to
e Control information, Rd index, ...
* Result of ALU operation
e Value in case this is a memory store instruction

11

EX

EX

aulodid Jo 159y

a g 430

A

branch?
T

q [|wuw p+2d ||| 1110

pcsel
pcreg

9029 uUOoIldNJls

pcrel
N
)
a0
©
)
(W a
bs

pca

12

EX/MEM

ID/EX

Stage 4: Memory

On cycle:
e Read EX/MEM pipeline register to get values and control bits

* Perform memory load/store if needed
— address is ALU result

Write values of interest to
e Control information, Rd index, ...
e Result of memory operation
e Pass result of ALU operation

MEM

13

MEM

aul|adid Jo 159y

o 3
2
al w & E
Ll
>
N
5 g
®)
0|V|mu O
&
dm
>
Ll
g MR || =
>
Ll

91n23ax3 : € adels

Stage 5: Write-back

On cycle:
 Read MEM/WSB pipeline register to get values and control bits
* Select value and write to register file

15

WB

result

Stage 4: Memory

dest

MEM/WB

16

WB

APl <<H—
] Rd
INnst >/p > a) Sa) BN
mem o Bl=| oo =N\ l
E= Ra Rb addr
£ [PV aRld d. P12V
ir mem
¥ g
PC| ¢
O e e
o o o
e
< (ol (ol ol
< ®) ®) ®
@

IF/ID ID/EX EX/MEM MEM/WB

17

add
nand

add
SW

r3,
roe,
r4,
r5,
r/,

rl, r2;
r4, r5;
20(r2);
r2, r5;
12(r3);

EEEEEEE

18

APl <<H—
] Rd
INnst >/p > a) Sa) BN
mem o Bl=| oo =N\ l
E= Ra Rb addr
£ [PV aRld d. P12V
ir mem
¥ g
PC| ¢
O e e
o o o
e
< (ol (ol ol
< ®) ®) ®
@

IF/ID ID/EX EX/MEM MEM/WB

19

Clock cycle

1 2 3 4 6 7 8 9
7)/\ S
add IF [|| ID ||| EX |[MEM|\|WB
nand |F |D EX [IIMEM||fWB
I IF || 1D || EX 4MEM WB
add IF ID/ EX | [MEM|| WB
|
SW I/FJ ID EX |/ IMEM||| WB
) ¥
Latency: § C‘Z‘QQ/‘“S | CPI = % [O

Throughput: |((W‘r\‘/&‘/d'@
Concurrency: 5

20

Pipelining Recap

Powerful technique for masking latencies
* Logically, instructions execute one at a time

* Physically, instructions execute in parallel

— Instruction level parallelism

Abstraction promotes decoupling

* Interface (ISA) vs. implementation (Pipeline)

21

