Lec 12: Register Calling

Kavita Bala
CS 3410, Fall 2008
Computer Science
Cornell University

Announcements

e PA 1 is due this Wed

» Ask us questions if in doubt

© Kavita Bala, Computer Science, Cornell University

Program Layout

* Programs consist of
segments used for different
purposes
— Text: holds instructions data

— Data: holds statically allocated
program data such as

variables, strings, etc. text

© Kavita Bala, Computer Science, Cornell University

When you run the program

TEF o,
Stack segment

l
T

Dynamic data
=TT == Data segment
Static data

10000000,

100900 [Reserved |

Text segment

© Kavita Bala, Computer Science, Cornell University

Assembling Programs

text . .

et main * Programs consist of a mix of
main: la $4, Larray instructions, pseudo-ops

li $5, 15 and assembler directives

li $4, 0

jal exit » Assembler lays out binary

'ZZ?ama'” values in memory based on
Larray: directives

Jong 51, 491, 3991

© Kavita Bala, Computer Science, Cornell University
Procedures

» Enable code to be reused by allowing code
snippets to be invoked

* Will need a way to
— call the routine

— pass arguments to it
= fixed length
= variable length
» Recursive calls

— return value to caller

— manage registers

© Kavita Bala, Computer Science, Cornell University

Call Stacks

* A call stack contains activation
records (aka stack frames) high mem

e Each activation record contains

— the return address for that
invocation

— the local variables for that
procedure

low mem

© Kavita Bala, Computer Science, Cornell University

Take 3: JAL/JR with Activation Records

mult:

addiu sp,sp,-4
sw $31, 0(sp)
beq $4, $0, Lout

jal mult

Linside:

Lout:
Iw $31, 0(sp)
addiu sp,sp,4
ir $31

e Stack used to save and restore contents of $31

© Kavita Bala, Computer Science, Cornell University

Many Arguments

 What if there
are more than
4 arguments?

» Use the stack
for the
additional
arguments

— “spill”

© Kavita Bala, Computer Science, Cornell University

Variable Length Arguments

» Best to use an (initially confusing but
ultimately simpler) approach:
— Pass the first four arguments in registers, as usual
— Pass the rest on the stack

— Reserve space on the stack for all arguments,
including the first four

» Simplifies functions that use variable-length
arguments

— Store a0-a3 on the slots allocated on the stack,
refer to all arguments through the stack

© Kavita Bala, Computer Science, Cornell University

Register Layout on Stack

* First four
arguments are in
registers

e The rest are on
the stack

* There is room on
the stack for the
first four
arguments, just
in case

© Kavita Bala, Computer Science, Cornell University

Globals and Locals

. GIo_baI variables are allocated in the “data”
region of the program
— Exist for all time, accessible to all routines

* Local variables are allocated within the stack
frame
— Exist solely for the duration of the stack frame

» Dangling pointers are pointers into a destroyed
stack frame
— C lets you create these, Java does not
— int *foo() { int a; return &a; }

© Kavita Bala, Computer Science, Cornell University

Frame Layout on Stack

return address

blue() {

- pink(0,1,2,3,4,5);

}

return address

local variables pink() {
saved regs orange(10,11,12,13,14);
arguments }

local variables

© Kavita Bala, Computer Science, Cornell University

Buffer Overflows

return address

- pink(0,1,2,3,4,5);

blue() {

}

local variables

pink() {

saved regs orange(10,11,12,13,14);
arguments
return address }
local variables orange() {
char buf[100];
gets(buf); // read string, no check]
}

© Kavita Bala, Computer Science, Cornell University

Frame Pointer

* It is sometimes cumbersome to keep track of
location of data on the stack

— The offsets change as new values are pushed
onto and popped off of the stack

» Keep a pointer to the top of the stack frame

— Simplifies the task of referring to items on the
stack

« A frame pointer, $30, aka fp
— Value of sp upon procedure entry
— Can be used to restore sp on exit

© Kavita Bala, Computer Science, Cornell University

Frame Pointer

| Saved arguments Higher addresses

First word of frame $fp| Saved return address

Saved registers
(if any) Stack grows downwards

Local Arrays and
Structures
(if any)
Last word of frame $sp

Lower addresses

© Kavita Bala, Computer Science, Cornell University

Register Usage

» Suppose a routine would like to store a value in a register
* Two options: caller-save and callee-save

What is tradeoff?
— If all caller save, could be waste
— If all callee save, could be waste

MIPS calling convention supports both
— Callee-save regs: $16-$23 (s0-s7)
— Caller-save regs: $8-$15,$24,$25 (t0-t9)

© Kavita Bala, Computer Science, Cornell University

Register Usage

» Callee-save
— Save it if you modify it
— Assumes caller needs it

— Save the previous contents of the register on
procedure entry, restore just before procedure return

— E.g. $31 (what is this?)

» Caller-save
— Save it if you need it after the call
— Assume callee can clobber any one of the registers
— Save contents of the register before proc call
— Restore after the call

© Kavita Bala, Computer Science, Cornell University

Caller-Save

« Assume registers are free

main: for the taking
[use $9 & 58] . ggttr?éhgerlnilébroutlnes will
o . — must protect values that will
:‘Svd::zgp')s be used later
o — save and restore them
sw $8, 0(sp) before and after subroutine
jal mult invocations
Iw $9, 4(sp) « Pays off if a routine makes
Iw 58, O(sP) few calls to other routines
addiu sp.sp.8 with values that need to
be preserved
[use $9 & $8]
© Kavita Bala, Computer Science, Cornell University
Callee-Save
- » Assume caller is using
mult:

addiu sp,sp,-12
sw $31,8(sp)
sw $17, 4(sp)
sw $16, 0(sp)

[use $17 and $16]

Iw $31,8(sp)
Iw $17, 4(sp)
Iw $16, 0(sp)
addiu sp,sp,12

the registers

¢ Save on entry, restore
on exit

» Pays off if caller is
actually using the
registers, else the save
and restore are wasted

© Kavita Bala, Computer Science, Cornell University

10

Leaf vs. non-leaf

» Leaf
— Simple, fast
— Don't save registers

e intf(int x, int y) {return (x+y);}

e f:

add $v0, $a0, $al #addxandy
j $ra # return

nop

e Or
j $ra
add $vO0, $a0, $al

© Kavita Bala, Computer Science, Cornell University

Example

f: beq $al, $zer0, Done
nop
addi $sp, $sp, -12
NotDone: sw $ra, 8($sp)
sw $a0,4($sp)
sw $al,0($sp)
move $a0, $a0
subi $ail, $al, 1
jal f
nop
Iw $a0,4(sp)
Iw $a1,0(sp)
Iw $ra,8(sp)
addi $sp, $sp, 12
add v0, $a0, $v0
j Exit
nop
Done: move $v0, $zero
Exit: return $ra

© Kavita Bala, Computer Science, Cornell University

11

Mult example

Main () { intres = mult (a, b);}

int Mult (int a, int b) {
if (b == 0) {return 0;}
else {
res = a + mult (a, b-1);
return res;
}
}

Translates to
Main:
move a0, a
move al, b
jal mult

© Kavita Bala, Computer Science, Cornell University

Preserved vs. Not preserved

* Preserved (Callee Save)
— $s0-$s7
— Save prior to use, restore before return
— $sp, $fp, $gp, $ra

* Not preserved (Caller Save)

— $t0-$t9, $a0-%a3, $vO, $v1
— Saved by caller if needed after proc call

© Kavita Bala, Computer Science, Cornell University

12

MIPS Register Recap

Return address: $31 (ra)

Stack pointer: $29 (sp)

Frame pointer: $30 (fp)

First four arguments: $4-$7 (a0-a3)

Return result: $2-$3 (v0-v1)

Callee-save free regs: $16-$23 (s0-s7)
Caller-save free regs: $8-$15,$24,$25 (t0-t9)
Reserved: $26, $27

Global pointer: $28 (gp)

Assembler temporary: $1 (at)

© Kavita Bala, Computer Science, Cornell University

What happens on a call?

« Caller
— Save caller-saved registers $a0-$a3, $t0-$t9
— Load arguments in $a0-$a3, rest passed on stack
— Execute jal
» Callee Setup
— Allocate memory for new frame ($sp = $sp-frame)
— Save callee-saved registers $s0-$s7, $fp, $ra
— Set frame pointer ($fp = $sp-frame-4)
» Callee Return
— Place return value in $v0 and $v1
— Restore any callee-saved registers
— Pop stack ($sp = $sp + frame size)
— Return by jr $ra

© Kavita Bala, Computer Science, Cornell University

13

FP | —" First four arguments

Before call: passed in registers
_/'
FP
Callee =] .
- LSP | Adjust SP
setup; step 1
/’
FP
Cat“ee i 5 | SP | ra Save registers as needed
setup; ste old fp
P P _SsO&s?
[FP
Callee Fsp| [ta | AdjustFP
. : old fp
setup; step 3 590-557

© Kavita Bala, Computer Science, Cornell University

Example

f: sl $t0, $a0, 2
beq $t0,$zero, skip
ori $vO, $zero, 1
jr $ra

skip: addiu $sp, $sp, -32
sw $ra, 28($sp)
sw $fp, 24($sp)
addiu $fp, $sp, 28
sw $a0, 32($sp)
addui $a0, $a0, -1
jal f

link: Iw $a0, 32($sp)
mul $v0, $v0, $a0
Iw $ra, 28($sp)
Iw $fp, 24($sp)
addiu $sp, $sp, 32
jr $ra #return

© Kavita Bala, Computer Science, Cornell University

14

Factorial

int fact (int n) {
if (n <= 1) return 1,
return n*fact(n-1);

}

fact: slti $t0, $a0, 2 #a0<2

beq $t0,$zero, skip # goto skip
ori $v0, $zero, 1 #returnl
ir $ra

skip: addiu $sp, $sp, -32 # $sp down 32

sw $ra, 28($sp) # save $ra
sw $fp, 24($sp) # save $fp
addiu $fp, $sp, 28 # set up $fp
sw $a0, 32($sp) #save n
addui $a0, $a0, -1 #n=n-1

jal fact

link: lw $a0, 32($sp) # restore n

mul $v0, $v0, $a0 # n * fact (n-1)
Iw $ra, 28($sp) # load $ra

Iw $fp, 24($sp) # load $fp
addiu $sp, $sp, 32 #pop stack

jr $ra #return

© Kavita Bala, Computer Science, Cornell University

Foo and Bar

int foo (int num) {
return bar(hum+1);

}

int bar (int num) {
return num+1;

}

foo: addiu $sp, $sp, -32 #push frame

sw $ra, 28($sp) #store $ra
sw $fp, 24($sp) #store $fp
addiu $fp, $sp, 28 #set new fp
addiu $a0, $a0, 1 #num +1
jal bar

Iw $fp, 24($sp) #load $fp
Iw $ra, 28($sp) #load $ra
addiu $sp, $sp, 32 #pop frame
jr $ra

bar: addiu $v0,$a0,1 #leaf procedure

jr $ra #with no frame

© Kavita Bala, Computer Science, Cornell University

15

From Assembly to Running

(_ Compiler

—

| Assambly language program

i .-lsﬁ:»:—ml:-l»e.-r.')
'Otuject: Machine language medules | |Object: Library routine (maching Ianguagej-.
N
 Linker)

Executable: Machine language program

N

{_ Loader
Memaory

© Kavita Bala, Computer Science, Cornell University

Big Picture

» Assembler output is obj files
— Not executable
— May refer to external symbols
— Each object file has its own address space

* Linker joins these object files into one
executable

» Loader brings it into memory and executes

© Kavita Bala, Computer Science, Cornell University

16

Object File Generation

» A program is made up of code and data
from several object files

» Each object file is generated independently

» Assembler starts at some PC address, e.g.
0, in each object file, generates code as if
the program were laid out starting out at
location 0x0

* |t also generates a symbol table, and a
relocation table
—In case the segments need to be moved

© Kavita Bala, Computer Science, Cornell University

Object file

Header

— Size and position of pieces of file
Text Segment

— instructions

Data Segment

— Static data

Relocation Information

— Instructions and data that depend on absolute
addresses

Symbol Table
— External and unresolved references
Debugging Information

© Kavita Bala, Computer Science, Cornell University

17

