

CIS 330:
Applied Database Systems

27 Aug 2004: Introduction
Alan Demers

demers@cs.cornell.edu

Course Goals

• Understand the functionality of modern database
systems

• Understand where database systems fit into an
enterprise data management infrastructure

• Design and build data-driven applications websites

• Learn several important tools:
• Database System: Microsoft SQL Server
• Application Server: Apache Tomcat
• Data Modeling tool: DeZign for Databases

• Learn several important technologies
• JDBC, JSP, Servlets, XML/XSLT/XPath, web services, J2EE

Instructor

• Alan Demers
• ademers@cs.cornell.edu

• Office hours:
• TTh, 1:00-2:00, Upson Hall 4115
• Always welcome to ask questions via email

(ademers@cs.cornell.edu)
• Ask questions after the lecture

Course Mechanics

• Homepage will have all the relevant material
• Slides will be online before each lecture
• Every student who is enrolled in the class will

receive a loaner laptop
• Laptops will be distributed next week
• You need to be officially enrolled in order to receive a

laptop!

• Course Outline: See Webpage

Software: DeZign for Databases

Prerequisites and Grading

• Prerequisites:
• CS211; if you don’t have CS211, talk to me after

class

• Grading:
• 20 (smaller and larger) homework assignments (no

groups), total of 60%.
• Two exams:

• Midterm: 15%
• Final: 20%

• Class participation: 5%

Introduction

• Three-tier architectures
• Introduction to database systems

The Big Picture

WWW Site
Visitor

THE WEB

Public Web Server

Business
Transaction

Server

Main
Memory
Cache

DBMS

Data
Warehouse
Application

Server

INTRANET,
VPN

Internal User

Internal
Web Server

Enterprise Architectures

Three separate types of functionality:
• Data management
• Application logic
• Presentation

• The system architecture determines
whether these three components reside
on a single system (“tier) or are distributed
across several tiers

Single-Tier Architectures

• All functionality combined into a single tier,
usually on a mainframe
• User access through dumb terminals

• Advantages:
• Easy maintenance and administration

• Disadvantages:
• Today, users expect graphical user interfaces.
• Centralized computation of all of them is too much for

a central system

Client-Server Architectures

• Work division: Thin client
• Client implements only the graphical user

interface
• Server implements business logic and data

management
• Work division: Thick client

• Client implements both the graphical user
interface and the business logic

• Server implements data management

Client-Server Architectures (Contd.)

• Disadvantages of thick clients
• No central place to update the business logic
• Security issues: Server needs to trust clients

• Access control and authentication needs to be managed at
the server

• Clients need to leave server database in consistent state
• One possibility: Encapsulate all database access into stored

procedures
• Does not scale to more than several 100s of clients

• Large data transfer between server and client
• More than one server creates a problem: x clients, y servers:

x*y connections

The Three-Tier Architecture

Database System

Application Server

Client Program (Web Browser)Presentation tier

Middle tier

Data management
tier

The Three Layers

• Presentation tier
• Primary interface to the user
• Needs to adapt to different display devices (PC, PDA,

cell phone, voice access?)
• Middle tier

• Implements business logic (implements complex
actions, maintains state between different steps of a
workflow)

• Accesses different data management systems
• Data management tier

• One or more standard database management
systems

Example 1: Airline reservations

• Build a system for making airline reservations
• What is done in the different tiers?
• Database System

• Airline info, available seats, customer info, etc.
• Application Server

• Logic to make reservations, cancel reservations, add
new airlines, etc.

• Client Program
• Log in different users, display forms and human-

readable output

Example 2: Course Enrollment

• Build a system using which students can enroll
in courses

• Database System
• Student info, course info, instructor info, course

availability, pre-requisites, etc.
• Application Server

• Logic to add a course, drop a course, create a new
course, etc.

• Client Program
• Log in different users (students, staff, faculty), display

forms and human-readable output

Three-Tier Architecture: Advantages

• Heterogeneous systems
• Tiers can be independently maintained, modified, and replaced

• Thin clients
• Only presentation layer at clients (web browsers)

• Integrated data access
• Several database systems can be handled transparently at the

middle tier
• Central management of connections

• Scalability
• Replication at middle tier permits scalability of business logic

• Software development
• Code for business logic is centralized
• Interaction between tiers through well-defined APIs: Can reuse

standard components at each tier

Technologies

Database System
(Microsoft SQL Server)

Application Server
(Tomcat, Apache)

Client Program
(Web Browser)

HTML
Javascript
XSLT

XML, JSP,
Servlets
Cookies, EJB,
XPath, web
services

SQL,
Stored
Procedures

Why Database Systems?

Discuss with your neighbor: What functionality is
required from database systems in the following
application scenarios:

• EBay (www.ebay.com)
• Barnes and Noble (www.bn.com)
• General Motors (www.gm.com)
• The Protein Data Bank (http://www.rcsb.org/

pdb)
• Sprint (www.sprint.com)
• Your cell phone

Why Store Data in a DBMS?

• Benefits
• Transactions (concurrent data access,

recovery from system crashes)
• High-level abstractions for data access,

manipulation, and administration
• Data integrity and security
• Performance and scalability

Digression – What Is a Transaction?

The execution of a program that performs a
function by accessing a database.

Examples:
• Reserve an airline seat. Buy an airline ticket.
• Withdraw money from an ATM.
• Verify a credit card sale.
• Order an item from an Internet retailer.
• Download a video clip and pay for it.
• Play a bid at an on-line auction.

Transactions

• A transaction is an atomic sequence of actions
• Each transaction must leave the system in a

consistent state (if system is consistent when
the transaction starts).

• The ACID Properties:
• Atomicity
• Consistency
• Isolation
• Durability

Example Transaction: Online Store

Your purchase transaction:
• Atomicity: Either the complete purchase

happens, or nothing
• Consistency: The inventory and internal

accounts are updated correctly
• Isolation: It does not matter whether other

customers are also currently making a purchase
• Durability: Once you have received the order

confirmation number, your order information is
permanent, even if the site crashes

Transactions (Contd.)

A transaction will commit after completing all
its actions, or it could abort (or be aborted
by the DBMS) after executing some
actions.

Example Transaction: ATM

You withdraw money from the ATM machine
• Atomicity
• Consistency
• Isolation
• Durability

Commit versus Abort?
What are reasons for commit or abort?

Transactions: Examples

Give examples of transactions in the following
applications. Which of the ACID properties are
needed?

• EBay (www.ebay.com)
• Barnes and Noble (www.bn.com)
• General Motors (www.gm.com)
• The Protein Data Bank (http://www.rcsb.org/

pdb)
• Sprint (www.sprint.com)
• Your cell phone

What Makes Transaction Processing Hard

• Reliability - system should rarely fail
• Availability - system must be up all the time
• Response time - within a few seconds
• Throughput - thousands of transactions/second
• Scalability - start small, ramp up to Internet-scale
• Security – for confidentiality and high finance
• Configurability - for above requirements + low cost
• Atomicity - no partial results
• Durability - a transaction is a legal contract
• Distribution - of users and data

Reliability and Availability

• Reliability - system should rarely fail
• Availability - system must be up all the time

Downtime Availability
1 hour/day 95.8%
1 hour/week 99.41%
1 hour/month 99.86%
1 hour/year 99.9886%
1 minute/day 99.9988%
1 hour/20years 99.99942%
1 minute/week 99.99983%

Performance

• Response time - within 1-2 seconds
• Throughput - thousands of transactions/second
• Scalability - start small, ramp up to Internet-

scale

What Makes TP Important?

• It is at the core of electronic commerce
• Most medium-to-large businesses use TP

for their production systems. The business
can’t operate without it.

• It is a huge slice of the computer system
market — over $50B/year. Probably the
single largest application of computers.

TP System Infrastructure

• User’s viewpoint
• Enter a request from a browser or other display device
• The system performs some application-specific work,

which includes database accesses
• Receive a reply (usually, but not always)

• The TP system ensures that each transaction
• is an independent unit of work
• executes exactly once, and
• produces permanent results.

• TP system makes it easy to program transactions
• TP system has tools to make it easy to manage

System Characteristics

• Typically < 100 transaction types per application
• Transaction size has high variance. Typically,

• 0-30 disk accesses
• 10K - 1M instructions executed
• 2-20 messages

• A large-scale example: airline reservations
• 150,000 active display devices
• plus indirect access via Internet travel agents
• thousands of disk drives
• 3000 transactions per second, peak

Concurrency Control for Isolation

(Start: A=$100; B=$100)

Consider two transactions:
• T1: START, A=A+100, B=B-100, COMMIT
• T2: START, A=1.06*A, B=1.06*B, COMMIT

The first transaction is transferring $100 from B’s account
to A’s account. The second transaction is crediting both
accounts with a 6% interest payment.

Database systems try to do as many operations
concurrently as possible, to increase performance.

Example (Contd.)

(Start: A=$100; B=$100)

• Consider a possible interleaving (schedule):
T1: A=A+$100, B=B-$100 COMMIT
T2: A=1.06*A, B=1.06*B COMMIT
End result: A=$106; B=$0

• Another possible interleaving:
T1: A=A+100, B=B-100 COMMIT
T2: A=1.06*A, B=1.06*B COMMIT
End result: A=$112; B=$6

The second interleaving is incorrect! Concurrency control of a
database system makes sure that the second schedule does not
happen.

Ensuring Atomicity

• DBMS ensures atomicity (all-or-nothing
property) even if the system crashes in
the middle of a transaction.

• Idea: Keep a log (history) of all actions
carried out by the DBMS while executing :
• Before a change is made to the database, the

corresponding log entry is forced to a safe
location.

• After a crash, the effects of partially executed
transactions are undone using the log.

Recovery

• A DBMS logs all elementary events on
stable storage. This data is called the log.

• The log contains everything that changes
data: Inserts, updates, and deletes.

• Reasons for logging:
• Need to UNDO transactions
• Recover from a systems crash

Recovery: Example

(Simplified process)
• Insert customer data into the database
• Check order availability
• Insert order data into the database
• Write recovery data (the log) to stable

storage
• Return order confirmation number to the

customer

Why Store Data in a DBMS?

• Benefits
• Transactions (concurrent data access,

recovery from system crashes)
• High-level abstractions for data access,

manipulation, and administration
• Data integrity and security
• Performance and scalability

Data Model

• A data model is a collection of concepts
for describing data.

• Examples:
• ER model (used for conceptual modeling)
• Relational model, object-oriented model,

object-relational model (actually implemented
in current DBMS)

The Relational Data Model

A relational database is a set of relations. Turing
Award (“Nobel Prize” in CS) for Codd in 1980 for
his work on the relational model

• Example relation:
Customers(cid: integer, name: string, byear: integer, state: string)

The Relational Model: Terminology

• Relation instance and schema
• Field (column)
• Record or tuple (row)
• Cardinality

Customer Relation (Contd.)

• In your enterprise, you are more likely to have a
schema similar to the following:

Customers(cid, identifier, nameType, salutation,
firstName, middleNames, lastName,
culturalGreetingStyle, gender, customerType, degrees,
ethnicity, companyName, departmentName, jobTitle,
primaryPhone, primaryFax, email, website, building,
floor, mailstop, addressType, streetNumber, streetName,
streetDirection, POBox, city, state, zipCode, region,
country, assembledAddressBlock, currency,
maritalStatus, bYear, profession)

Product Relation

• Relation schema:
Products(pid: integer, pname: string, price: float,

category: string)

• Relation instance:

Transaction Relation

• Relation schema:
Transactions(

tid: integer,
tdate: date,
cid: integer,
pid: integer)

• Relation instance:

The Object-Oriented Data Model

• Richer data model. Goal: Bridge impedance
mismatch between programming languages and
the database system.

• Example components of the data model:
Relationships between objects directly as
pointers.

• Result: Can store abstract data types directly in
the DBMS
• Pictures
• Geographic coordinates
• Movies
• CAD objects

Object-Oriented DBMS

• Advantages: Engineering applications
(CAD and CAM and CASE computer
aided software engineering), multimedia
applications.

• Disadvantages:
• Technology not as mature as relational DMBS
• Not suitable for decision support, weak

security
• Vendors are much smaller companies and

their financial stability is questionable.

Object-Oriented DBMS (Contd.)

Vendors:
• Gemstone (www.gemstone.com)
• Objectivity (www.objy.com)
• ObjectStore (www.objectstore.net)
• POET (www.poet.com)
• Versant (www.versant.com, merged with POET)
Organizations:
• OMG: Object Management Group

(www.omg.org)

Object-Relational DBMS

• Mixture between the object-oriented and
the object-relational data model
• Combines ease of querying with ability to

store abstract data types
• Conceptually, the relational model, but every

field
• All major relational vendors are currently

extending their relational DBMS to the
object-relational model

Query Languages

We need a high-level language to describe and
manipulate the data

Requirements:
• Precise semantics
• Easy integration into applications written in C++/

Java/Visual Basic/etc.
• Easy to learn
• DBMS needs to be able to efficiently evaluate

queries written in the language

Relational Query Languages

• The relational model supports simple,
powerful querying of data.
• Precise semantics for relational queries
• Efficient execution of queries by the DBMS
• Independent of physical storage

SQL: Structured Query Language

• Developed by IBM (System R) in the
1970s

• ANSI standard since 1986:
• SQL-86
• SQL-89 (minor revision)
• SQL-92 (major revision, current standard)
• SQL-99 (major extensions)

• More about SQL in the next lecture

Example Query

• Example Schema:
Customers(

cid: integer,
name: string,
byear: integer,
state: string)

• Query:
SELECT

Customers.cid,
Customers.name,

Customers.byear,
Customers.state
FROM Customers
WHERE Customers.cid = 3

Example Query

SELECT
Customers.cid,
Customers.name,
Customers.byear,
Customers.state

FROM Customers
WHERE

Customers.cid = 1

Why Store Data in a DBMS?

• Benefits
• Transactions (concurrent data access,

recovery from system crashes)
• High-level abstractions for data access,

manipulation, and administration
• Data integrity and security
• Performance and scalability

Integrity Constraints

• Integrity Constraints (ICs): Condition that
must be true for any instance of the
database.
• ICs are specified when schema is defined.
• ICs are checked when relations are modified.
• A legal instance of a relation is one that

satisfies all specified ICs.
• DBMS should only allow legal instances.

• Example: Domain constraints.

Primary Key Constraints

• A set of fields is a superkey for a relation if no
two distinct tuples can have same values in all
key fields.

• A set of fields is a key if the set is a superkey,
and none of its subsets is a superkey.

• Example:
• {cid, name} is a superkey for Customers
• {cid} is a key for Customers

• Where do primary key constraints come from?

Primary Key Constraints (Contd.)

• Can there be more than one key for a
relation?

• What is the maximum number of
superkeys for a relation with k fields?

Where do ICs Come From?

• ICs are based upon the semantics of the real-
world enterprise that is being described in the
database relations.

• We can check a database instance to see if an
IC is violated, but we can NEVER infer that an
IC is true by looking at an instance.
• An IC is a statement about all possible instances!
• From example, we know state cannot be a key, but

the assertion that cid is a key is given to us.
• Key and foreign key ICs are very common; a

DBMS supports more general ICs.

Security

• Secrecy: Users should not be able to see
things they are not supposed to.
• E.g., A student can’t see other students’

grades.
• Integrity: Users should not be able to

modify things they are not supposed to.
• E.g., Only instructors can assign grades.

• Availability: Users should be able to see
and modify things they are allowed to.

Why Store Data in a DBMS?

• Benefits
• Transactions (concurrent data access,

recovery from system crashes)
• High-level abstractions for data access,

manipulation, and administration
• Data integrity and security
• Performance and scalability

DBMS and Performance

• Efficient implementation of all database
operations

• Indexes: Auxiliary structures that allow fast
access to the portion of data that a query is
about

• Smart buffer management
• Query optimization: Finds the best way to

execute a query
• Automatic high-performance concurrent query

execution, query parallelization

Summary Of DBMS Benefits

• Transactions
• ACID properties, concurrency control, recovery

• High-level abstractions for data access
• Data models

• Data integrity and security
• Key constraints, foreign key constraints, access

control
• Performance and scalability

• Parallel DBMS, distributed DBMS, performance
tuning

