CIlS 330:
Applied Database Systems

27 Aug 2004: Introduction
Alan Demers
demers@cs.cornell.edu

Course Goals

- Understand the functionality of modern database
systems

- Understand where database systems fit into an
enterprise data management infrastructure

- Design and build data-driven applications websites

- Learn several important tools:
Database System: Microsoft SQL Server
- Application Server: Apache Tomcat
Data Modeling tool: DeZign for Databases
- Learn several important technologies
- JDBC, JSP, Servlets, XML/XSLT/XPath, web services, J2EE

Instructor

- Alan Demers
- ademers@cs.cornell.edu

- Office hours:

- TTh, 1:00-2:00, Upson Hall 4115

- Always welcome to ask questions via emalil
(ademers@cs.cornell.edu)

- Ask questions after the lecture

Course Mechanics

- Homepage will have all the relevant material
- Slides will be online before each lecture

* Every student who is enrolled in the class will
receive a loaner laptop
- Laptops will be distributed next week

* You need to be officially enrolled in order to receive a
laptop!

» Course Outline: See Webpage

Software: DeZign for Databases

#3Dezign for, Databases v3.0.0 - C:\websites\newdatanamic.com\plaatjes\voorbeeld. dez -

Fie Edit Yiew Diagram Dictionary Format Schema Took Help
[D@ W& @ REX| 2| 08| mws -5 F

Main Diagram .

fewxvwod]|@]9l

s

W Main Diagram :

= Enlities ORDERS
[COUNTRY
£ CUSTOMER
= ENDUSER
E"L] Altributes

ORDEREDITEM COUNTRY

0 Indexes .) !
o[Triggers 2 it CUSTOMER
[+ = ENDUSER_LICEMSE
w5 ITEM

[LICENSE
* 7] ORDEREDITEM
* -] ORDERS

[PRODUCT
#-[Relationships
= Domains
LOMGCHAR
MEDIUMCHAR
+ Sequences

« " Procedures

ENDUSER

PRODUCT

100 | Dracle 9

Prerequisites and Grading

- Prerequisites:

- CS211; if you don’t have CS211, talk to me after
class

- Grading:
« 20 (smaller and larger) homework assignments (no
groups), total of 60%.

- Two exams:
« Midterm: 15%
- Final: 20%
- Class participation: 5%

Introduction

- Three-tier architectures
- Introduction to database systems

The Big Picture

WWW Site Internal User
Visitor
I ‘\\\\ INTRANET,
VPN
THE WEB I
I _ Internal
Public Web Server Main Web Server
Memory I
I Data
Business Warehouse
Transaction Application
Server Server

Enterprise Architectures

Three separate types of functionality:
- Data management

» Application logic

- Presentation

- The system architecture determines
whether these three components reside
on a single system (“tier) or are distributed
across several tiers

Single-Tier Architectures

- All functionality combined into a single tier,
usually on a mainframe

« User access through dumb terminals

- Advantages:
- Easy maintenance and administration

- Disadvantages:
- Today, users expect graphical user interfaces.

- Centralized computation of all of them is too much for
a central system

Client-Server Architectures

- Work division: Thin client

- Client implements only the graphical user
interface

- Server implements business logic and data
management

- Work division: Thick client

- Client implements both the graphical user
iInterface and the business logic

- Server implements data management

Client-Server Architectures (Contd.)

- Disadvantages of thick clients
- No central place to update the business logic

- Security issues: Server needs to trust clients

+ Access control and authentication needs to be managed at
the server

- Clients need to leave server database in consistent state
- One possibility: Encapsulate all database access into stored
procedures
- Does not scale to more than several 100s of clients
- Large data transfer between server and client

- More than one server creates a problem: x clients, y servers:
X*y connections

The Three-Tier Architecture

Presentation tier Client Program (Web Browser)

Application Server
Middle tier

Database System
Data management

tier

The Three Layers

- Presentation tier
- Primary interface to the user

- Needs to adapt to different display devices (PC, PDA,
cell phone, voice access?)

- Middle tier

+ Implements business logic (implements complex
actions, maintains state between different steps of a
workflow)

- Accesses different data management systems

- Data management tier

- One or more standard database management
systems

Example 1: Airline reservations

Build a system for making airline reservations
What is done in the different tiers?

Database System
 Airline info, available seats, customer info, etc.

Application Server

- Logic to make reservations, cancel reservations, add
new airlines, etc.

Client Program

- Log in different users, display forms and human-
readable output

Example 2: Course Enroliment

Build a system using which students can enroll
INn courses

Database System

- Student info, course info, instructor info, course
availability, pre-requisites, etc.

Application Server

- Logic to add a course, drop a course, create a new
course, etc.

Client Program

- Log in different users (students, staff, faculty), display
forms and human-readable output

Three-Tier Architecture: Advantages

* Heterogeneous systems
- Tiers can be independently maintained, modified, and replaced
Thin clients
Only presentation layer at clients (web browsers)

Integrated data access

Several database systems can be handled transparently at the
middle tier

Central management of connections
Scalability

Replication at middle tier permits scalability of business logic
Software development

Code for business logic is centralized

Interaction between tiers through well-defined APIls: Can reuse
standard components at each tier

Technologies

Client Program

(Web Browser)

Application Server

(lomcat, Apache)

Database System
(Microsoft SOL Server)

HTML
Javascript
XSLT

XML, JSP

Servliets
Cookies, EJB,

XPath, web
services

SOL,
Stored
Procedures

Why Database Systems?

Discuss with your neighbor: What functionality is
required from database systems in the following
application scenarios:

- EBay (www.ebay.com)

- Barnes and Noble (www.bn.com)

- General Motors (www.gm.com)

- The Protein Data Bank (http://www.rcsb.org/
pdb)

- Sprint (www.sprint.com)

* Your cell phone

Why Store Data in a DBMS?

- Benefits

 Transactions (concurrent data access,
recovery from system crashes)

- High-level abstractions for data access,
manipulation, and administration

- Data integrity and security
- Performance and scalability

Digression — What Is a Transaction?

The execution of a program that performs a
function by accessing a database.

Examples:

- Reserve an airline seat. Buy an airline ticket.
- Withdraw money from an ATM.

- Verify a credit card sale.

* Order an item from an Internet retailer.

- Download a video clip and pay for it.

- Play a bid at an on-line auction.

Transactions

- A transaction is an atomic sequence of actions

- Each transaction must leave the system in a
consistent state (if system is consistent when
the transaction starts).

- The ACID Properties:
- Atomicity
- Consistency
* Isolation
* Durability

Example Transaction: Online Store

Your purchase transaction:

- Atomicity: Either the complete purchase
happens, or nothing

- Consistency: The inventory and internal
accounts are updated correctly

» |solation: It does not matter whether other
customers are also currently making a purchase

- Durability: Once you have received the order
confirmation number, your order information is
permanent, even if the site crashes

Transactions (Contd.)

A transaction will commit after completing all
its actions, or it could abort (or be aborted
by the DBMS) after executing some
actions.

Example Transaction: ATM

You withdraw money from the ATM machine
- Atomicity

- Consistency

- Isolation

* Durability

Commit versus Abort?
What are reasons for commit or abort?

Transactions: Examples

Give examples of transactions in the following
applications. Which of the ACID properties are
needed?

- EBay (www.ebay.com)

- Barnes and Noble (www.bn.com)

- General Motors (www.gm.com)

- The Protein Data Bank (http://www.rcsb.org/
pdb)

- Sprint (www.sprint.com)

* Your cell phone

What Makes Transaction Processing Hard

Reliability - system should rarely falil

- Availability - system must be up all the time
Response time - within a few seconds

- Throughput - thousands of transactions/second
Scalability - start small, ramp up to Internet-scale
Security — for confidentiality and high finance
Configurability - for above requirements + low cost

- Atomicity - no partial results
Durability - a transaction is a legal contract
Distribution - of users and data

Reliability and Availability

- Reliability - system should rarely fail
- Avallability - system must be up all the time

Downtime Availability
| hour/day 95.8%

| hour/week 99.41%

| hour/month 99.86%

| minute/day 99.9988%
| hour/20years 99.99942%
- minute/week 99.99983%

]
]
]
1 hour/year 99.9886%
]
]
]

Performance

- Response time - within 1-2 seconds
- Throughput - thousands of transactions/second

- Scalability - start small, ramp up to Internet-
scale

What Makes TP Important?

|t is at the core of electronic commerce

- Most medium-to-large businesses use TP
for their production systems. The business
can’'t operate without it.

- It is a huge slice of the computer system
market — over $50B/year. Probably the
single largest application of computers.

TP System Infrastructure

User’s viewpoint
Enter a request from a browser or other display device

- The system performs some application-specific work,
which includes database accesses

Receive a reply (usually, but not always)
The TP system ensures that each transaction

is an independent unit of work
executes exactly once, and
produces permanent results.

TP system makes it easy to program transactions
TP system has tools to make it easy to manage

System Characteristics

- Typically < 100 transaction types per application

- Transaction size has high variance. Typically,

* 0-30 disk accesses
« 10K - 1M instructions executed

- 2-20 messages

- Alarge-scale example: airline reservations
- 150,000 active display devices
- plus indirect access via Internet travel agents
- thousands of disk drives
- 3000 transactions per second, peak

Concurrency Control for Isolation

(Start: A=$100; B=$100)

Consider two transactions:
« T1: START, A=A+100, B=B-100, COMMIT
- T2: START, A=1.06*A, B=1.06*B, COMMIT

The first transaction is transferring $100 from B’s account
to A’s account. The second transaction is crediting both
accounts with a 6% interest payment.

Database systems try to do as many operations
concurrently as possible, to increase performance.

Example (Contd.)
(Start: A=$100; B=$100)

- Consider a possible interleaving (schedule):
T1: A=A+$100, B=B-$100 COMMIT

T2: A=1.06"A, B=1.06*"B COMMIT
End result: A=$106; B=30

» Another possible interleaving:

T1: A=A+100, B=B-100 COMMIT
T2: A=1.06*A, B=1.06"B COMMIT

End result: A=$112; B=%$6

The second interleaving is incorrect! Concurrency control of a
database system makes sure that the second schedule does not

Ensuring Atomicity

- DBMS ensures atomicity (all-or-nothing
property) even if the system crashes in
the middle of a transaction.

- Idea: Keep a log (history) of all actions
carried out by the DBMS while executing :

- Before a change is made to the database, the
corresponding log entry is forced to a safe
location.

- After a crash, the effects of partially executed
transactions are undone using the log.

Recovery

- A DBMS logs all elementary events on
stable storage. This data is called the log.

- The log contains everything that changes
data: Inserts, updates, and deletes.

- Reasons for logging:

- Need to UNDO transactions
- Recover from a systems crash

Recovery: Example

(Simplified process)

* |Insert customer data into the database
- Check order availability

Insert order data into the database

Write recovery data (the log) to stable
storage

Return order confirmation number to the
customer

Why Store Data in a DBMS?

- Benefits

- Transactions (concurrent data access,
recovery from system crashes)

* High-level abstractions for data access,
manipulation, and administration

- Data integrity and security
- Performance and scalability

Data Model

- A data model is a collection of concepts
for describing data.

- Examples:

- ER model (used for conceptual modeling)

- Relational model, object-oriented model,
object-relational model (actually implemented
in current DBMS)

The Relational Data Model

A relational database is a set of relations. Turing

Award (“Nobel Prize” in CS) for Codd in 1980 for
his work on the relational model

- Example relation:
Customers(cid: integer, name: string, byear: integer, state: string)

cid name | byear | state
1 Jones 1960 NY

Smith 1974 CA

3 Smith 1950 NY

The Relational Model: Terminology

Relation instance and schema
Field (column)

Record or tuple (row)
Cardinality

cid name | byear | state

1 Jones 1960 NY
Smith 1974 CA
3 Smith 1950 NY

Customer Relation (Contd.)

* In your enterprise, you are more likely to have a
schema similar to the following:

Customers(cid, identifier, nameType, salutation,
firstName, middleNames, lastName,
culturalGreetingStyle, gender, customerType, degrees,
ethnicity, companyName, departmentName, jobTitle,
primaryPhone, primaryFax, email, website, building,
floor, mailstop, addressType, streetNumber, streetName,
streetDirection, POBox, city, state, zipCode, region,
country, assembledAddressBlock, currency,
maritalStatus, bYear, profession)

Product Relation

- Relation schema:
Products(pid: integer, pname: string, price: float,

category: string)

- Relation instance:

pid pname price category
1 Intel PIII-700 300.00 hardware
2 MS Office Pro 500.00 software
3 IBM DB2 5000.00 software
4 Thinkpad 600E 5000.00 | hardware

Transaction Relation

- Relation schema:

Transactions(
tid: integer,
tdate: date,
cid: integer,
pid: integer)

- Relation instance:

tid tdate cid | pid
1 1/ 1/ 2000 1 1
1 1/ 1/ 2000 1| 2
2 1/ 1/ 2000 1 | 4
3 2/ 1/ 2000 2 3
3 2/ 1/ 2000 2 | 4

The Object-Oriented Data Model

- Richer data model. Goal: Bridge impedance
mismatch between programming languages and
the database system.

- Example components of the data model:
Relationships between objects directly as
pointers.

- Result: Can store abstract data types directly in
the DBMS
Pictures
. Geographlc coordinates
- Movies
- CAD objects

Object-Oriented DBMS

- Advantages: Engineering applications
(CAD and CAM and CASE computer
aided software engineering), multimedia
applications.

- Disadvantages:

- Technology not as mature as relational DMBS

- Not suitable for decision support, weak
security

- Vendors are much smaller companies and
their financial stability is questionable.

Object-Oriented DBMS (Contd.)

Vendors:

- Gemstone (www.gemstone.com)

- Objectivity (www.objy.com)

- ObjectStore (www.objectstore.net)

- POET (www.poet.com)

- Versant (www.versant.com, merged with POET)
Organizations:

- OMG: Object Management Group
(www.omg.org)

Object-Relational DBMS

- Mixture between the object-oriented and
the object-relational data model

- Combines ease of querying with ability to
store abstract data types

- Conceptually, the relational model, but every
field
- All major relational vendors are currently
extending their relational DBMS to the
object-relational model

Query Languages

We need a high-level language to describe and
manipulate the data

Requirements:

* Precise semantics

- Easy integration into applications written in C++/
Java/Visual Basic/etc.

- Easy to learn

- DBMS needs to be able to efficiently evaluate
gueries written in the language

Relational Query Languages

- The relational model supports simple,
powerful querying of data.
* Precise semantics for relational queries
- Efficient execution of queries by the DBMS
- Independent of physical storage

SQL: Structured Query Language

- Developed by IBM (System R) in the
1970s

- ANSI standard since 1986:

- SQ
- SQ
- SQ
- SQ

_-86
_-89 (minor revision)
_-92 (major revision, current standard)

_-99 (major extensions)

- More about SQL in the next lecture

Example Query

Example Schema:

Customers(cid name byear state
cid: integer, 1 Jones 1960 NY
name: string, 2 | Smith | 1974 | CA
byear: integer, 3 Smith 19
state: string) mit >0 NY

Query:

SELECT
Customers.cid, :

Customers.name, cid name byear state
Customers.byear, 3 Smith 1950 NY

Customers.state
FROM Customers
WHERE Customers.cid =3

Example Query

SELECT
Customers.cid,
Customers.name,
Customers.byear,
Customers.state

FROM Customers

WHERE
Customers.cid = 1

cid name byear state

1 Jones 1960 NY

2 Smith 1974 CA
3 Smith 1950 NY
cid name byear state
1 Jones 1960 NY

Why Store Data in a DBMS?

- Benefits

- Transactions (concurrent data access,
recovery from system crashes)

- High-level abstractions for data access,
manipulation, and administration

- Data integrity and security
- Performance and scalability

Integrity Constraints

- Integrity Constraints (ICs): Condition that
must be true for any instance of the
database.

- |ICs are specified when schema is defined.
- |Cs are checked when relations are modified.

- Alegal instance of a relation is one that
satisfies all specified ICs.

- DBMS should only allow legal instances.
- Example: Domain constraints.

Primary Key Constraints

- A set of fields is a superkey for a relation if no
two distinct tuples can have same values in all
key fields.

- A set of fields is a key if the set is a superkey,
and none of its subsets is a superkey.
- Example:

- {cid, name} is a superkey for Customers
- {cid} is a key for Customers

- Where do primary key constraints come from?

Primary Key Constraints (Contd.)

- Can there be more than one key for a
relation?

- What is the maximum number of
superkeys for a relation with k fields?

Where do ICs Come From?

- 1Cs are based upon the semantics of the real-

world enterprise that is being described in the
database relations.

- We can check a database instance to see if an
|C is violated, but we can NEVER infer that an
IC is true by looking at an instance.

- An IC is a statement about all possible instances!
- From example, we know state cannot be a key, but
the assertion that cid is a key is given to us.

- Key and foreign key ICs are very common; a
DBMS supports more general ICs.

Security

- Secrecy: Users should not be able to see
things they are not supposed to.
- E.g., A student can’t see other students’
grades.
» Integrity: Users should not be able to
modify things they are not supposed to.

- E.g., Only instructors can assign grades.

- Availability: Users should be able to see
and modify things they are allowed to.

Why Store Data in a DBMS?

- Benefits

- Transactions (concurrent data access,
recovery from system crashes)

- High-level abstractions for data access,
manipulation, and administration

- Data integrity and security
» Performance and scalability

DBMS and Performance

- Efficient implementation of all database
operations

- Indexes: Auxiliary structures that allow fast
access to the portion of data that a query is
about

- Smart buffer management

- Query optimization: Finds the best way to
execute a query

- Automatic high-performance concurrent query
execution, query parallelization

Summary Of DBMS Benefits

Transactions
- ACID properties, concurrency control, recovery

High-level abstractions for data access
- Data models

Data integrity and security

- Key constraints, foreign key constraints, access
control

Performance and scalability

- Parallel DBMS, distributed DBMS, performance
tuning

