CS 3220: PRELIM 1 EXAMPLE QUESTIONS
Instructor: Anil Damle

WHAT'S IN THIS DOCUMENT
These questions are intended to be somewhat representative of the type of questions that could arise on the first prelim.

QUESTION 1
Here, we consider some properties of \(\| A \|_F \). For what follows \(A \in \mathbb{R}^{n \times n} \)

(a) Prove that
\[
\| A \|_F^2 = \sum_{i=1}^{n} \| A(:,i) \|_2^2.
\]

(b) For any two orthogonal matrices \(Q_1 \in \mathbb{R}^{n \times n} \) and \(Q_2 \in \mathbb{R}^{n \times n} \) prove that
\[
\| Q_1 A Q_2 \|_F = \| A \|_F
\]

(c) Prove that
\[
\| A \|_F = \sqrt{\sum_{i=1}^{n} \sigma_i^2},
\]
where \(\sigma_1, \ldots, \sigma_n \) are the singular values of \(A \).

QUESTION 2
Here, we ask you to interpret the condition number of a \(2 \times 2 \) matrix geometrically. (Hint: pictures are useful here!)

1. We saw that the SVD of a \(2 \times 2 \) matrix allows us to view any matrix \(A \) as mapping a circle to an ellipse. If \(A \) becomes increasingly ill-conditioned what is geometrically happening to the ellipse?

2. Geometrically argue why for an ill-conditioned matrix a small relative change in \(b \) can result in a big relative change in \(x \).

QUESTION 3
Say you are given a symmetric matrix \(A \) and tasked with computing the algebraically smallest eigenvalue. Using only the power method (applied to \(A \) or matrices related to \(A \)), how might you go about doing this? (Hint: think about how the eigenvalues/vectors of \(A - \gamma I \) relate to those of \(A \) for any scalar \(\gamma \in \mathbb{R} \).)