
CS 3220: The Singular Value Decomposition
Instructor: Anil Damle

Disclaimer

These notes are intended to highlight key points from some of the lectures. However, they are not
written nor intended to be substitutes for the lectures. Furthermore, the resources section of the
website contains extensive written material covering the topics in class, material that was developed
with the explicit intention of being a written presentation of this material. Many of those books
are several editions into their existence and, therefore, have been refined in a way these notes are
not. In addition, the textbooks given are invariably far more comprehensive and thorough in their
treatment of the topics. Lastly, I take full responsibility for any typos included herein; nevertheless,
these notes are a work in progress and if you find anything amiss please let me know.

The Singular value decomposition

For the purposes of this course there are several aspects of the so-called Singular Value Decompo-
sition (SVD) of a matrix that we will be interested in—these notes primarily pertain to algebraic
properties of the SVD. We start with a definition:

Definition 1 (The full SVD). Given A ∈ Rm×n there exist orthogonal matrices U ∈ Rm×m and
V ∈ Rn×n with columns {ui}mi=1 and {vi}mi=1 along with a “diagonal matrix” Σ ∈ Rm×n (in the
sense that Σi,j = 0 if i 6= j) with diagonal entries σi ≡ Σi,i satisfying σ1 ≥ σ2 ≥ · · · ≥ σmin (m,n) ≥ 0
such that

A = UΣV T .

We call the columns of U the left singular vectors of A and the columns of V the right singular
vectors of A. The σi’s are the singular values of A. Collectively, the matrices U,Σ, and V are
referred to as the SVD of A.

While not quite unique, the factorization is essentially unique and all of the properties we
will discuss are valid regardless of the specific SVD given/found; therefore, we omit any further
consideration of this point.

Connections to fundamental subspaces

In class, we defined the following four subspaces pertaining to any matrix A ∈ Rm×n:

Range: The range of a matrix (synonymously, the column space) is defined as

{z ∈ Rm|z = Ax for some x ∈ Rn}.

Colloquially, this is the set of vectors that one can produce by taking arbitrary linear combinations
of the columns of A.

Co-Range: The co-range of a matrix (synonymously, the row space) is defined as

{z ∈ Rn|z = ATx for some x ∈ Rm}.

Colloquially, this is the set of vectors that one can produce by taking arbitrary linear combinations
of the rows of A. This is equivalent to the range of AT .
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Kernel: The kernel (synonymously, the null space) of A is defined as

{x ∈ Rn|Ax = 0}.

The kernel of a matrix is the set of vectors mapped to zero. Note that 0 is always in the kernel and
we call the kernel of a matrix A non-trivial if there exist non-zero vectors in it (i.e., the dimension
of the null space is greater than zero).

Co-Kernel: Quite simply, the kernel of AT . More formally this is defined as

{x ∈ Rm|ATx = 0}.

Here, our first consideration related to these subspaces is that the SVD reveals an orthonormal
basis for each of these spaces. In particular, let r ≤ min (m,n) be the number of non-zero singular
values. Then, we have that:

• range (A) = span {u1, . . . , ur}

• null (A) = span {vr+1, . . . , vn} (If r = n the null space of A is just the zero vector.)

• range (AT ) = span {v1, . . . , vr}

• null (AT ) = span {ur+1, . . . , un} (If r = m the null space of AT is just the zero vector.)

Several standard observations stem from these facts. First, we immediately see that range (A) ⊥
null (AT ) and range (AT ) ⊥ null (A) because U and V are orthogonal matrices. Second, we have that
Dim (range (A)) = r, Dim (null (A)) = n − r, Dim (range (AT )) = r, and Dim (null (AT )) = m − r.
This means that the range of A and null space of AT decompose Rm into two orthogonal subspaces
that jointly span all of Rm. Similarly, the null space of A and range of AT decompose Rn into
two orthogonal subspaces that jointly span all of Rn. All of the preceding may be inferred from
examination of the SVD.

The rank of a matrix

Keeping with the theme of framing everything in terms of the SVD, we define the rank of a matrix
in the following manner.

Definition 2 (Rank of a matrix). The rank of a matrix A ∈ Rm×n is the number of non-zero
singular values of A.

Observe that by definition, we have that rank (A) ≤ min (m,n). In addition, we also have that
the rank of a matrix is the dimension of the column space (and row space). (This also motivates
the use of a subscript r in the previous section.) When m = n we say a matrix is full rank if r = n.
For m > n we say a matrix is full column rank if r = n and if m < n we say a matrix is full row
rank if r = m. (Though, sometimes for rectangular matrices we may omit “row” or “column” and
simply refer to them as full rank if r = min (m,n).)

The SVD as a sum of rank one matrices

An alternative view of the SVD is that it yields a representation of A as a sum of rank-one matrices.
In particular, the SVD yields

A =

r∑
i=1

σiuiv
T
i .
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Best approximation via the SVD

Building off of the preceding interpretation of the SVD, it is interesting to think about what happens
if we truncate the sum. In particular, let

Ak =
k∑

i=1

σiuiv
T
i

for k ≤ r. Clearly this matrix is related to A in some way. It turns out that it solves a very specific
approximation problem, that of approximating A by a lower rank matrix. While we do not dwell
on why low-rank approximations are useful here, one example may be found in the SVD demo code
available on the course website.

Here, we discuss the so-called Eckart-Young-Mirsky theorem. This Theorem tells us that Ak is
the best approximation of A by a rank k matrix, in fact it is so in two different norms.

Theorem 1 (Eckart-Young-Mirsky, informally). Let A ∈ Rm×n have SVD A = UΣV T and define
Ak = Ak =

∑k
i=1 σiuiv

T
i . Ak solves the optimization problem

min
B of rank k

‖A−B‖∗

for ∗ = {2, F}. Furthermore

‖A−Ak‖2 = σk+1 and ‖A−Ak‖F =

min (m,n)∑
i=k+1

σ2i

1/2

.
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