
1

CS 322: Background for A6A

1. Vector Norms

Norms are used to measure the size of vectors and matrices. For a vector

x =

 x1
...
xn


we have these important examples:

, x ,2 =
�
x21 + · · ·+ x2n

, x ,1 = |x1| + · · ·+ |xn|
These are the 2-norm and 1-norm respectively. There are many other examples. One often has to “choose the
right norm” in a particular application. For us that will almost always be the 2-norm or a weighted 2-norm:

, x ,w =
0
w1|x1|+ · · ·+ wn|xn|

Here, one chooses positive weights w1, . . . , wn to emphasize (or de-emphasize) the importance of particular
components.

In Matlab norm computations are easy. If x and w are vectors having the same length (and orientation)
then norm(x), norm(x,1) and norm(x.*w) return , x ,2, , x ,1, and , x ,w respectively.

If the particular norm being used is obvious or unimportant, we drop the subscript. Thus, , x− y ,measures
the distance between two vectors in some obvious or unimportant norm. A vector norm must satisfy three
properties:

1. , x , ≥ 0 with equality only if x is the zero vector.
2. , x+ y , <= , x ,+ , y , where x and y are vectors.
3. , αx , = |α|, x , where α is a scalar and x is a vector.

2. Matrix Norms

Matrix norms are similar. Our first example is the Frobenius norm. If A ∈ IRm×n then

, A ,F =

>��: n3
j=1

m3
i=1

a2ij

The command norm(A,’fro’) returns the Frobenius norm of A. Weighting the columns in this summation
produces a weighted Frobenius norm and that will be useful in some of our applications:

function t = normWF(A,w)

% A is an m-by-n matrix and w is an n-vector with positive entries. Returns

% the correspondiing column weighted Frobenius norm of A. A call of the form

% normWF(A) is legal and simply sets all the weights to one.

[m,n] = size(A);

if nargin==1

w = ones(n,1);

end

t = 0;

for k=1:n

t = t + w(k)*(A(:,k)’*A(:,k));

end

t = sqrt(t);

2

Another matrix norm is the 2-norm:

,A ,2 = max
, x ,2 = 1

, Ax ,2

The idea here is to see how much A can stretch a unit vector. The image of the unit sphere under the “map”
x→ Ax is an egg-shaped object—a hyperellipsoid. The 2-norm of the matrix A is just the length of the longest
semiaxis.

3. Translation in 3-space

Suppose we have a bunch of 3-vectors. Let’s assemble them in a 3-by-n matrix A. If we add a given 3-vector
v to each vector, then the set of vectors is said to be translated by v. In Matlab:

for j=1:n

A(:,j) = A(:,j) + v;

end

This is equivalent to

A = A+v*ones(1,n)

Now suppose we are given two sets of 3-vectors {a1, . . . , an} and {b1, . . . , bn} and that we want to translate
the latter so that it is “as close as possible” to the former. Let v be the (unknown) translation vector and
for j = 1:n quantify the distance between aj and bj + v with the 2-norm. This prompts us to minimize the
function

φ(v) =
n3
j=1

, aj − (bj + v) ,22 =
n3
j=1

(cj − v)T (vj − v)

where we set cj = aj − bj and used the fact that , x ,22 = xTx.
When trying to find a critical point (e.g., a minimum) of such a function we set its gradient to zero:

∇φ(v) = ∇φ(v1, v2, v3) =

 ∂φ/∂v1

∂φ/∂v2

∂φ/∂v3

 =

 00
0

 .
Now

φj(v) ≡ (cj − v)T (cj − v) = cTj cj − 2vT cj + vT v
has the property that

∇φj(v) = −2cj + 2v
and so

∇φ(v) =
n3
j=1

(−2cj + 2v) .

Equating this to zero gives a recipe for the optimum v:

vopt =
1

n

n3
j=1

cj

This is just the centroid of the vectors a1 − b1, . . . , an − bn. Here is a Matlab function that does this. The
two sets of vectors are represented as a pair of 3-by-n vectors.

function v = optTranslate(A,B)

%

% A and B are 3-by-n matrices.

% v is a 3-vector that minimizes

%

% || A(:,1) - (B(:,1)+v) ||^2 + ... + || A(:,n) - (B(:,n)+v) ||^2

%

[m,n] = size(A);

v = zeros(3,1);

for i=1:n

v = v + (A(:,i) - B(:,i));

end

v = v/n;

4. Orthogonal Matrices

A matrix Q ∈ IRn×n is orthogonal if QTQ = In where In is the n-by-n identity matrix. Here is an example:

Q =
1

9

 7 −4 −4
−4 1 −8
−4 −8 1


Some properties of orthogonal matrices:

(a) The transpose of an orthogonal matrix is its inverse.

(b) If Q ∈ IRn×n is orthogonal then QQT = In.
(c) The determinant of an orthogonal matrix is ±1 since

1 = det(In) = det(Q
TQ) = det(QT)det(Q) = det(Q)2

(d) Every column of an orthogonal matrix has unit 2-norm and is orthogonal to every other column, i.e.,
Q(:, i)TQ(:, j) is one if i = j and 0 otherwise.

(e) Every row of an orthogonal matrix has unit 2-norm and is orthogonal to every other row, i.e., Q(i, :)Q(j, :)T

is one if i = j and 0 otherwise.

(f) The entries in an orthogonal matrix are in between -1 and 1.

(g) A vector does not change length when it is multiplied by an orthogonal matrix. This is because

,Qx ,22 = (Qx)T (Qx) = (xTQT)(Qx) = xT (QTQ)x = xT Inx = xTx = , x ,22

(h) Recall that if x, y ∈ IRn then xT y = , x ,2, y ,2 cos(θ) where θ is the angle between x and y. The angle
between two vectors does not change if they are each multiplied by an orthogonal matrix because their
inner product does not change:

(Qx)T (Qy) = (xTQT)(Qy) = xT y

(i) The Frobenius norm of a matrix A ∈ IRn×n does not change if it is multiplied by an orthogonal matrix
Q ∈ IRn×n for if C = QA then

, C ,2F =
n3
j=1

, C(:, j) ,22 =
n3
j=1

,QA(:, j) ,22 =
n3
j=1

, A(:, j) ,22 = , A ,2F

(j) If Q1, Q2 ∈ IRn×n are each orthogonal, then so is their product:

(Q1Q2)
T (Q1Q2) = (Q

T
2Q

T
1)(Q1Q2) = Q

T
2 (Q

T
1Q1)Q2 = Q

T
2Q2 = In

4

5. Rotations

All 2-by-2 orthogonal matrices have the form

Q1 =

 cos(θ) sin(θ)

− sin(θ) cos(θ)

 or Q2 =

 cos(θ) sin(θ)

sin(θ) − cos(θ)


for some angle θ. The example Q1 is a rotation and the example Q2 is a reflection. Rotations have determinant
1 and reflections have determinant -1.

In general, we will say that an orthogonal matrix Q is a rotation if det(Q) = 1. Products of rotations are
rotations.

We will be concerned with the rotation of coordinate systems in 3-space. In this context, 3-by-3 rotation
matrices are important. It turns out that any such matrix is a product of the form

Q =

 1 0 0
0 cos(θ3) sin(θ3)
0 − sin(θ3) cos(θ3)

 cos(θ2) sin(θ2) 0
− sin(θ2) cos(θ2) 0

0 0 1

 1 0 0
0 cos(θ1) sin(θ1)
0 − sin(θ1) cos(θ1)

 .
You should regard the factors on the right as “simple” rotation matrices in that each leaves one coordinate
“alone” when it is applied. Note that three angles characterize a 3-by-3 rotation. Here is a Matlab function
that generates a random 3-by-3 rotation matrix:

function Q = randRot

% Generates a random 3-by-3 rotation matrix.

theta = 2*pi*randn(3,1);

c = cos(theta);

s = sin(theta);

Q1 = [1 0 0 ; ...

0 c(1) s(1) ; ...

0 -s(1) c(1)];

Q2 = [c(2) 0 s(2) ; ...

0 1 0 ; ...

-s(2) 0 c(2)];

Q3 = [1 0 0 ; ...

0 c(3) s(3) ; ...

0 -s(3) c(3)];

Q = Q3*Q2*Q1

We mention that there are other ways that a 3-by-3 rotation can be represented:

Q =

 1 0 0
0 cos(θ3) sin(θ3)
0 − sin(θ3) cos(θ3)

 cos(θ2) 0 sin(θ2)
0 1 0

− sin(θ2) 0 cos(θ2)

 cos(θ1) sin(θ1) 0
− sin(θ1) cos(θ1) 0

0 0 1

 .

6. The Trace of a Matrix

The trace of a square matrix is the sum of its diagonal entries:

G ∈ IRn×n ⇒ tr(G) =
n3
i=1

gii

In Matlab, the value of sum(diag(G)) is the trace of the matrix G. Properties of the trace include

5

(a) If G ∈ IRm×n then ,G ,2F = tr(GTG):

tr(GTG) =
n3
k=1

(GTG)kk =
n3
k=1

X
m3
i=1

g2ik

~
= ,G ,2F .

(b) If G ∈ IRn×n, then tr(GT) = tr(G).
(c) If F,G ∈ IRn×n, then tr(F +G) = tr(F) + tr(G).
(d) If F,G ∈ IRn×n, then tr(FG) = tr(GF).
(e) If G,Z ∈ IRn×n and Z is orthogonal, then tr(ZTGZ) = tr(G):

tr(ZTGZ) =

n3
k=1

(ZTGZ)kk =

n3
k=1

Z(:, k)TGZ(:, k) =

n3
k=1

 n3
i=1

n3
j=1

zikgijzjk


=

n3
i=1

n3
j=1

gij

X
n3
k=1

zikzjk

~

=

n3
i=1

n3
j=1

gijδij =

n3
i=1

gii

where δij = 1 if i = j and zero otherwise.

7. The Singular Value Decomposition (SVD)

If A ∈ IRn×n then there exist orthogonal matrices U, V ∈ IRn×n such that
UTAV = Σ = diag(σ1, . . . , σn)

where σ1 ≥ σ2 ≥ · · · ≥ σn ≥ 0. This is called the singular value decomposition (SVD) of A. The σi’s are the
singular values and the columns of U and V are the left and right singular vectors respectively.

Matlab has a built-in function that can be used to compute the singular value decomposition. The script

A = [4 -1 3; 2 7 -5 ; -6 2 1]

[U,Sigma,V] = svd(A)

computes the SVD UTAV = Σ where

A =

 4 −1 3
2 7 −5
−6 2 1



U =

 −0.2755 0.5212 −0.8078
0.9576 0.2230 −0.1826
0.0850 −0.8238 −0.5605



Σ =

 9.0422 0 0
0 7.5076 0
0 0 2.6221



V =

 0.0336 0.9955 −0.0890
0.7905 −0.0809 −0.6070
−0.6115 −0.0500 −0.7897



6

−5 −4 −3 −2 −1 0 1 2 3 4 5
−4

−3

−2

−1

0

1

2

3

4

Figure 1 SVD Geometry

There is a nice geometry associated with the SVD which is most simply discussed when n = 2. The map
x → Ax maps the unit circle onto an ellipse: The singular values are the lengths of the semiaxes. Moreover,
the dotted vectors in the figure are AV (:, 1) = σ1U(:, 1) and AV (:, 2) = σ2U(:, 2) respectively. Here is the
script that produces the figure:

% Script File ShowSVD

% Show what a 2-by-2 matrix does to the unit sphere.

A = [1 3; 2 2];

% Generate 200 unit vectors

t = linspace(0,2*pi,200);

P = [cos(t);sin(t)];

% The columns of B are the images of these unit vectors.

B = A*P;

% Depict the ellipse and its semiaxes

plot(B(1,:),B(2,:))

axis([-4 4 -4 4])

axis(’equal’)

hold on

plot(0,0,’o’)

[U,S,V] = svd(A);

plot([0 S(1,1)*U(1,1)],[0 S(1,1)*U(2,1)],’:r’)

plot([0 S(2,2)*U(1,2)],[0 S(2,2)*U(2,2)],’:r’)

hold off

7

8. Finding Best Rotations with the SVD

Consider the problem of finding a 3-by-3 orthogonal matrix that minimizes ,A−QB ,F where A,B ∈ IR3×n
are given. Using properties of the trace we have

, A−QB ,2F = tr
D
(A−QB)T (A− QB)i

= tr
D
(AT −BTQT)(A−QB)i

= tr
D
ATA−BTQTA−ATQB +BTQTQBi

= tr(ATA)− tr(BTQTA)− tr(ATQB) + tr(BTQTQB)
= tr(ATA)− tr(ATQB)− tr(ATQB) + tr(BTB)
= ,A ,2F + , B ,2F − 2tr(AT (QB))
= ,A ,2F + , B ,2F − 2tr(QBAT)

Thus, the problem of choosing a 3-by-3 rotation Q that minimizes , A−QB ,F is equivalent to the problem
of maximizing tr(QBAT) over all 3-by-3 orthogonal Q.

Suppose

UTCV = Σ =

 s1 0 0
0 s2 0
0 0 s3


is the SVD of the 3-by-3 matrix C = BAT . It follows that

tr(QC) = tr((V TQ(UUT)CV))

= tr((V TQU)(UTCV))

= tr(̃(Q)Σ) = q̃11σ1 + q̃22σ2 + q̃33σ3

where Q̃ = V TQU . Note that Q̃ is orthogonal. The entries in an orthogonal matrix are always between -1 and
1 and so the above three-term sum is maximized if q̃11 = q̃22 = q̃33 = 1. Since Q̃’s columns have unit 2-norm,
it follows that Q̃ = I3, i.e., V U

T is the optimizing Q.
To sum up, , A− QB ,F is minimized by setting Q = Qopt = V UT where UT (BAT)V = Σ is the SVD of

BAT .
However, we are interested in minimizing ,A−QB ,F over all 3-by-3 rotations. If det(V UT) = det(U)det(V)

= 1, then the procedure outlined above renders the optimum rotation. But if det(U) and det(V) are opposite
in sign, then det(V UT) is negative and we have a problem. To rectify this we return to

,A−QB ,2F = , A ,2F + ,B ,2F − 2tr(QC) C = BAT

and ask how we can maximize tr(QC) given that Q is a rotation. As we have said, we cannot simply compute
the SVD UTCV = Σ and set Qopt = V U

T since this matrix has a negative determinant. Note however, that if u11 u12 u13
u21 u22 u23
u31 u32 u33

T C
 v11 v12 v13
v21 v22 v23
v31 v32 v33

 =

 σ1 0 0
0 σ2 0
0 0 σ3


is the SVD, then  u11 u12 −u13

u21 u22 −u23
u31 u32 −u33

T C
 v11 v12 v13
v21 v22 v23
v31 v32 v33

 =

 σ1 0 0
0 σ2 0
0 0 −σ3

 .
Set

U− =

 u11 u12 −u13
u21 u22 −u23
u31 u32 −u33



8

and

Σ− =

 σ1 0 0
0 σ2 0
0 0 −σ3


and note that UT−CV = Σ−. Thus,

tr(QC) = tr(V QU−UT−CV) = tr(Q̃Σ−) = q̃11σ1 + q̃22σ2 − q̃33σ3

If we parameterize Q̃ as follows

Q̃ =

 1 0 0
0 cos(θ3) sin(θ3)
0 − sin(θ3) cos(θ3)

 cos(θ2) sin(θ2) 0
− sin(θ2) cos(θ2) 0

0 0 1

 1 0 0
0 cos(θ1) sin(θ1)
0 − sin(θ1) cos(θ1)

 .
then

tr(Q̃Σ−) = q̃11σ1 + q̃22σ2 − q̃33σ3
= c2σ1 + (c1c2c3 − s1s3)σ2 + (−s1c2s3 + c1c3)σ3
= f(θ1, θ2, θ3),

a function of three variables. Using elementary calculus and the fact that σ1 ≥ σ2 ≥ σ3 ≥ 0 it is possible to
show that the optimum Q̃ is I3. It follows that

Qopt = V U
T
− .

9. The Overall Method

Given A,B ∈ IR3×n our aim is to translate and rotate B so that it matches A as much as possible. In
particular, we are looking for a 3-vector v and a rotation Q so that

, A−Q(B + veT) ,F = min

Here, e ∈ IRn is the vector of all ones. Note that

, A−Q(B + veT) ,F = , (QTA− B)− veT ,F
From §3 we know that for any Q the optimum v is given by (QTA − B)e/n. Thus, our goal is to choose a
rotation Q so that

, (QTA−B)− veT ,F = , (QTA− B)− (QTA−B)eeT /n ,F
= , (A−QB)− (A−QB)eeT /n) ,F
= , Ã−QB̃ ,F

is minimized where
Ã = A(I − eeT /n) and B̃ = B(I − eeT /n.

Note that the columns of these two matrices have centroids at 0, i.e., Ãe/n = B̃e/n = 0.
So the overall process involves applying the ideas of §8 to Ã and B̃ to get the optimum rotation Qopt and

then setting vopt = (Q
T
optA−B)e/n

