CS 322: Background for AGA

1. Vector Norms

Norms are used to measure the size of vectors and matrices. For a vector

1
T =
Tn
we have these important examples:
Izl = yaf+---+ap
lzlly = |zl +- 4zl

These are the 2-norm and 1-norm respectively. There are many other examples. One often has to “choose the
right norm” in a particular application. For us that will almost always be the 2-norm or a weighted 2-norm:

I ll, = Vwilei] + -+ wnlzn]

Here, one chooses positive weights w1, ..., w, to emphasize (or de-emphasize) the importance of particular

components.

In MATLAB norm computations are easy. If x and w are vectors having the same length (and orientation)
then norm(x), norm(x,1) and norm(x.*w) return || z ||y, || z ||;, and || ||,, respectively.

If the particular norm being used is obvious or unimportant, we drop the subscript. Thus, || z — y || measures
the distance between two vectors in some obvious or unimportant norm. A vector norm must satisfy three
properties:

1. ||z || > 0 with equality only if z is the zero vector.
2. lz+yl|l<=|z|+ |yl where x and y are vectors.

3. |laz || = ||| z | where « is a scalar and z is a vector.

2. Matrix Norms

Matrix norms are similar. Our first example is the Frobenius norm. If A € R™*"™ then

The command norm(A, >fro’) returns the Frobenius norm of A. Weighting the columns in this summation
produces a weighted Frobenius norm and that will be useful in some of our applications:

function t = normWF(A,w)
% A is an m-by-n matrix and w is an n-vector with positive entries. Returns
% the correspondiing column weighted Frobenius norm of A. A call of the form
% normWF (A) is legal and simply sets all the weights to one.

[m,n] = size(A);
if nargin==
w = ones(n,1);
end
t = 0;
for k=1:n
t =t + wk*(AC,k)?*A(:,k));
end
t = sqrt(t);

Another matrix norm is the 2-norm:

[Al, = max [Az,
[zl =1

The idea here is to see how much A can stretch a unit vector. The image of the unit sphere under the “map”
x — Az is an egg-shaped object—a hyperellipsoid. The 2-norm of the matrix A is just the length of the longest
semiaxis.

3. Translation in 3-space

Suppose we have a bunch of 3-vectors. Let’s assemble them in a 3-by-n matrix A. If we add a given 3-vector
v to each vector, then the set of vectors is said to be translated by v. In MATLAB:

for j=1:n
AC:,3) = A,) + v,
end

This is equivalent to
A = A+v*ones(1,n)

Now suppose we are given two sets of 3-vectors {aq,...,a,} and {b1,...,b,} and that we want to translate
the latter so that it is “as close as possible” to the former. Let v be the (unknown) translation vector and
for j = 1:n quantify the distance between a; and b; + v with the 2-norm. This prompts us to minimize the

function
n

¢(v) = Z laj = (b + o) ll; = > (ej —v)" (v — v)

=1

where we set ¢; = a; — b; and used the fact that || z ||§ =zT.
When trying to find a critical point (e.g., a minimum) of such a function we set its gradient to zero:

0¢/0v1 0
V¢(U) = V¢(Ul,vg,v3) = 8(1)/802 = 0
[Op/ s J 0

Now
¢ (v) = (c; —v) (¢j —v) =cl¢j —2vT¢; +v"v
has the property that
Voji(v) = —2¢; + 2v
and so

Vo(v) = (—2¢; +).

j=

—

Equating this to zero gives a recipe for the optimum v:

n
1
'Uot:_E Cj
D n 4 J
Jj=1

This is just the centroid of the vectors a; — by,...,a, — b,. Here is a MATLAB function that does this. The
two sets of vectors are represented as a pair of 3-by-n vectors.

function v = optTranslate(A,B)
A
% A and B are 3-by-n matrices.
% v is a 3-vector that minimizes

%
%01 AC,1) - BCG,D+v) 172+ ... + || AC:,n) - (B(:,n)+v)]2
yA

[m,n] = size(d);

v = zeros(3,1);

for i=1:n

v=v+ (AC:,1) - B(:,1));
end
v = v/n;

4. Orthogonal Matrices

A matrix Q € R™ " is orthogonal if QT Q = I,, where I, is the n-by-n identity matrix. Here is an example:

[T 4
Q=5| 4 1 -8
—4 -8 1

Some properties of orthogonal matrices:

(a) The transpose of an orthogonal matrix is its inverse.
(b) If Q € R™ ™ is orthogonal then QQT = I,,.

(c) The determinant of an orthogonal matrix is +1 since

1 =det(I,,) = det(QTQ) = det(QT)det(Q) = det(Q)>

(d) Every column of an orthogonal matrix has unit 2-norm and is orthogonal to every other column, i.e.,
Q)T Q(:,7) is one if i = j and 0 otherwise.

(e) Every row of an orthogonal matrix has unit 2-norm and is orthogonal to every other row, i.e., Q(i,:)Q(j,:)T
is one if 4 = j and 0 otherwise.
(f) The entries in an orthogonal matrix are in between -1 and 1.

(g) A vector does not change length when it is multiplied by an orthogonal matrix. This is because
1 Qxl; = (@0)"(Qx) = ¢"Q")(Q) = 2" (QTQ)z =2 T =aTw = ||z |3
(h) Recall that if 2,y € R" then 27y = ||z ||,|| y ||, cos(f) where ¢ is the angle between z and y. The angle

between two vectors does not change if they are each multiplied by an orthogonal matrix because their
inner product does not change:

Q)" (Qy) = (z"Q™)(Qy) = 2Ty

(i) The Frobenius norm of a matrix A € R**" does not change if it is multiplied by an orthogonal matrix
Q € R"*" for if C = QA then

1CIE=>"1C =D 1 QA=Y IAC) 3=1Al%
j=1 j=1 j=1

(G) If Q1,Q2 € R*™™ are each orthogonal, then so is their product:

(Q1Q2)T(Q1Q2) = (QTQT)(Q1Q2) = QT (QTQ1)Q2 = QT Qs = I,

5. Rotations

All 2-by-2 orthogonal matrices have the form

cos(f) sin() cos(0) sin(0)
Q1= or Q2=
—sin(f) cos(9) sin(d) — cos(6)

for some angle 6. The example @1 is a rotation and the example Q- is a reflection. Rotations have determinant
1 and reflections have determinant -1.

In general, we will say that an orthogonal matrix @ is a rotation if det(Q) = 1. Products of rotations are
rotations.

We will be concerned with the rotation of coordinate systems in 3-space. In this context, 3-by-3 rotation
matrices are important. It turns out that any such matrix is a product of the form

1 0 0 cos(fz) sin(f2) 0 1 0 0
Q=10 cos(f3) sin(fs3) —sin(f2) cos(f2) 0 0 cos(f1) sin(6q)
0 —sin(f3) cos(f3) 0 0 1 0 —sin(fy) cos(d)

You should regard the factors on the right as “simple” rotation matrices in that each leaves one coordinate
“alone” when it is applied. Note that three angles characterize a 3-by-3 rotation. Here is a MATLAB function
that generates a random 3-by-3 rotation matrix:

function Q = randRot
% Generates a random 3-by-3 rotation matrix.
theta = 2*pi*randn(3,1);
¢ = cos(theta);
s = sin(theta);

Q1 =[1 0 0 ;
0 c(1) s() ; ...
0 -s(1) c() 1;
Q2 = [c(2) 0 s(2) ;
0 1 0 5
-s(2) 0 c(2) 1;
3 =[1 0 0 ;
0 c(3) s(3) ; ...
0 -s(3) c(3 1;
Q = Q3*Q2*Q1

We mention that there are other ways that a 3-by-3 rotation can be represented:

1 0 0 cos(f2) 0 sin(6z) cos(f1) sin(f1) 0
Q=10 cos(f3) sin(f3) 0 1 0 —sin(f;) cos(f1) 0
0 —sin(f3) cos(fs) —sin(f2) 0 cos(62) 0 0 1

6. The Trace of a Matrix

The trace of a square matrix is the sum of its diagonal entries:
n
G e R = tI‘(G) = Zg“
i=1

In MATLAB, the value of sum(diag(G)) is the trace of the matrix G. Properties of the trace include

(a) If G € R™" then || G |7 = tr(GTG):

tr(GTG) = > (T = Y (Zm) =G|%.
k=1 1 =1

k=

(b) If G € R™™", then tr(GT) = tr(G).

(c) If F,G € R**", then tr(F + G) = tr(F) + tr(G).

(d) If F,G € R**", then tr(FG) = tr(GF).

(e) If G,Z € R"*"™ and Z is orthogonal, then tr(Z7GZ) = tr(G):

ZTGZ ZZ TGZ Z ZZzikgijzjk
k=1 k=1 \ i=1 j=1
n
9ij (Z Zikzjk:>
k=1

9ij zg = E Gii

where d;; = 1 if i = j and zero otherwise.

tr(Z7GZ) =

M:

x>
Il

1

I
NE

Il
i
u Mz TLM3

1y

7. The Singular Value Decomposition (SVD)
If A € IR™™"™ then there exist orthogonal matrices U,V € R"*" such that
UTAV = % = diag(o1, ..., 0n)

where 01 > 09 > --+ > 0, > 0. This is called the singular value decomposition (SVD) of A. The o;’s are the
singular values and the columns of U and V are the left and right singular vectors respectively.
MATLAB has a built-in function that can be used to compute the singular value decomposition. The script

A=1[4-13;,27-5; -621]
[U,Sigma,V] = svd(A)

computes the SVD UTAV = ¥ where

A:

1
S N
\
[N
|
= ot W
| I |

[—0.2755 0.5212 —-0.8078
U = 0.9576 0.2230 —0.1826
0.0850 —0.8238 —0.5605

[9.0422 0 0]
Y = 0 7.5076 0
0 0 2.6221 J

0.0336 0.9955 —0.0890
V = 0.7905 —0.0809 —0.6070
—0.6115 —0.0500 —0.7897

FI1GURE 1 SVD Geometry

There is a nice geometry associated with the SVD which is most simply discussed when n = 2. The map
x — Az maps the unit circle onto an ellipse: The singular values are the lengths of the semiaxes. Moreover,
the dotted vectors in the figure are AV (:,1) = o1U(:,1) and AV (:,2) = o2U(:,2) respectively. Here is the
script that produces the figure:

% Script File ShowSVD
% Show what a 2-by-2 matrix does to the unit sphere.

A=1[13; 2 2];
% Generate 200 unit vectors

t = linspace(0,2*pi,200);
[cos(t);sin(t)];

o
I

% The columns of B are the images of these unit vectors.
B = AxP;
% Depict the ellipse and its semiaxes

plot(B(1,:),B(2,:))

axis([-4 4 -4 41)

axis(’equal’)

hold on

plot(0,0,’0?)

[U,S,V] = svd(A);

plot ([0 S(1,1)*U(1,1)1,[0 S(1,1)*U(2,1)],’:x’)
plot ([0 S(2,2)*U(1,2)], [0 S(2,2)%U(2,2)],:r’)
hold off

8. Finding Best Rotations with the SVD

Consider the problem of finding a 3-by-3 orthogonal matrix that minimizes || A — @B ||, where A, B € R3*"
are given. Using properties of the trace we have

2
IA-QB |

tr(A QB)T(A-QB))
= tr((A" - BTQ")(A-QB))
= tr(ATA-BTQTA - ATQB + BTQTQB)
= tr(ATA) —tr(BTQTA) — tr(ATQB) + tr(BTQTQB)
= tr(ATA) — tr(ATQB) — tr(ATQB) + tr(BT B)
= Az +II B |7 —2tr(AT(@B))
= | A%+ B7 —2tx(QBA")

Thus, the problem of choosing a 3-by-3 rotation () that minimizes || A — @B || is equivalent to the problem
of mazimizing tr(QBAT) over all 3-by-3 orthogonal Q.

Suppose
S1 0 0
Ufcv == 0 sy 0
0 0 S3

is the SVD of the 3-by-3 matrix C = BAT. It follows that

tr(QC) = tr(VIQUUT)CV))
= a((VTQu)(UTcy))
= tr((Q)X) = 1101 + Goaos + 3303

where Q = VTQU. Note that Q is orthogonal. The entries in an orthogonal matrix are always between -1 and
1 and so the above three-term sum is maximized if G1; = §o2 = ¢33 = 1. Since Q’s columns have unit 2-norm,
it follows that Q = Is, i.e., VU7 is the optimizing Q.

To sum up, || A— QB || is minimized by setting Q = Qopr = VUT where UT(BAT)V = X is the SVD of
BAT.

However, we are interested in minimizing || A — QB || - over all 3-by-3 rotations. If det(VUT) = det(U)det(V)
= 1, then the procedure outlined above renders the optimum rotation. But if det(U) and det(V') are opposite
in sign, then det(VUT) is negative and we have a problem. To rectify this we return to

|A-QB|3=Al%+I Bl —2tr(QC) C=BAT

and ask how we can maximize tr(QC) given that @Q is a rotation. As we have said, we cannot simply compute
the SVD UTCV = ¥ and set Qopt =VU T since this matrix has a negative determinant. Note however, that if

T

U1l U2 U3 V11 Vi2 V13 cp 0 O

U2l U2 U3 C | va1 w22 w23 = 0 o2 O

u3] U32 U33 V31 V32 V33 0 0 o3

is the SVD, then
T

U1l U2 —U13 v11 V12 V13 op 0 0
U2l U2z —U23 C| var wvar w23 | = 0 o2 O
U3l U3z —U33 U3l V32 V33 0 0 -—o3

Set
Ul U2 —UI3
U_= | w1 wug2 —u23
u31 U32 —U33

and
g1 0 0
Y_ = 0 o2 0
0 0 —03

and note that UTCV = ¥ _. Thus,
tI‘(QC) = tI'(VQU_UTCV) = tI‘(QNE_) = (1110'1 + 11220'2 — 6330'3

If we parameterize Q as follows

5 1 0 0 cos(fz) sin(f2) 0O 1 0 0
Q=10 cos(f3) sin(f3) —sin(f2) cos(f2) 0 0 cos(fy) sin(61)
0 —sin(f3) cos(fs) 0 0 1 0 —sin(fy) cos(f)
then
tr(QS_) = 1101 + G2202 — G3303
= 01 + (c1c2c3 — s183)02 + (—s1c283 + cic3)03
= f(91792763)a

a function of three varia’tzles. Using elementary calculus and the fact that o1 > 09 > 03 > 0 it is possible to
show that the optimum @ is I3. It follows that

Qopt = VUT.

9. The Overall Method

Given A, B € R**™ our aim is to translate and rotate B so that it matches A as much as possible. In
particular, we are looking for a 3-vector v and a rotation @ so that

| A—Q(B +vel) | = min
Here, e € R" is the vector of all ones. Note that
A= QB +ve") |p=[(QTA~ B) —ve' ||

From §3 we know that for any @ the optimum v is given by (QTA — B)e/n. Thus, our goal is to choose a
rotation () so that

1 (QTA—B) —ve” | 1 (QTA— B) - (QTA— B)ee’ /n ||
I (A= QB) — (A—QB)ee” /n) || p

= ”A_QBHF

is minimized where ~ 5
A= A(I — eeT /n) and B = B(I — e /n.

Note that the columns of these two matrices have centroids at 0, i.e., ~lee/n = Be/n =0.
So the overall process involves applying the ideas of §8 to A and B to get the optimum rotation Q,,: and
then setting vopt = (Q2,,A — B)e/n

