CS 322: Assignment 5

Due: Friday, April 23, 2004 (5 pm)

Do not submit work unless you have adhered to the principles of academic integrity as descibed on the course website:

```
http://www.cs.cornell.edu/Courses/cs322/2004sp/
```

Points will be deducted for poorly commented code, redundant computation that seriously effects efficiency, and failure to use features of MATLAB that are part of the course syllabus. In particular, use vector operations whenever possible. Pay attention to the course website for news that relates to this assignment.

Problem A (4 pts) Fitting Conic Sections

The set of points in the plane that satisfy $Q(x,y) = ax^2 + bxy + cy^2 + dx + ey + 1 = 0$ define a *conic section*. The circle, the parabola, the ellipse, and the hyperbola are examples. Given the points $(x_1, y_1), \ldots, (x_n, y_n)$, what's the "best" fitting conic section? One idea is to minimize the sum of squares $Q(x_1, y_1)^2 + \cdots + Q(x_n, y_n)^2$:

```
function [a,b,c,d,e] = ConicFit(xVals,yVals)
% xVals and yVals are column n-vectors, n>=5.
% a,b,c,d, and e are scalars chosen so that if
%
% Q(x,y)= ax^2 + bxy + cy^2 + dx + ey + 1
%
% then the sum of squares
%
% Q(xVals(1),yVals(1))^2 + ... + Q(xVals(n),yVals(n))^2
%
% is minimized.
```

You are allowed to use the "\" operator to solve least squares problems. We will test your implementation with the script A5A which is available on the website.

Problem B (8 pts) Solving Rational Equations

Suppose $d, v \in \mathbb{R}^{n-1}$ and $\alpha \in \mathbb{R}$ are given. Assume that $d_1 > d_2 > \cdots > d_{n-1} > 0$ and that $v_i \neq 0$, i = 1:n-1. The function

$$f(\lambda) = \lambda + \sum_{i=1}^{n-1} \frac{v_i^2}{d_i - \lambda} - \alpha$$

has n distinct roots. Complete the following function so that it performs as specified

```
function lambda = RationalSolver(d,v,alpha,tol) % d and v are column (n-1)-vector with d(1) > d(2) > ... > d(n-1), and % assume each v(i) is nonzero. % alpha is a scalar and tol is a positive scalar. % Define f(z) = z + v(1)^{2}/(d(1)-z) + ... + v(n-1)^{2}/(d(n-1)-z) - alpha % lambda is a column n-vector whose components satisfy lambda(1) > ... > lambda(n) % and are roots of f with absolute error less than or equal to tol.
```

Use fzero to find these roots. In particular, to compute λ_i , find a bracketing interval $[u_i, v_i]$ that contains λ_i (and only that root) and then execute lambda(i) = fzero('MyF', [u(i),v(i)],optimset('TolX',tol)). We are not supplying a test script—so make sure that you try out your code on a wide range of examples. In particular, make sure your bracketing intervals are reliable.

Part C (8 pts) Season Lengths and the Eccentric Model

Suppose the Sun moves counterclockwise along the circle $x^2 + y^2 = 1$ at a uniform rate. Assume that the Earth is located at (0,0) and has a 23.5° axis tilt with the tilt being towards the summer solstice point S in the following figure:

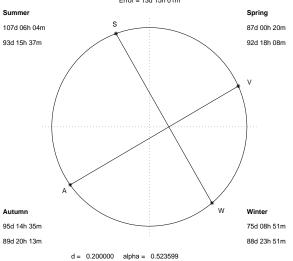


The points A, W, and V are respectively the autumnal equinox point, the winter solstice point, and the vernal equinox point. It follows that spring, summer, fall, and winter begin when the Sun passes through V, S, A, and W. As reported in the figure, we have a problem because the model predicts that each season has length 365.2425/4 = 91 days + 7 hours + 21 minutes when in fact they have rather different durations:

Season	Start	Length
Spring	19:02 March 20, 2002	92d $18h$ $08m$
Summer	13:07 June 21, 2002	$93d\ 15h\ 37m$
Autumn	04:29 September 23, 2002	$89d\ 20h\ 13m$
Winter	01:01 December 22, 2002	$88d\ 23h\ 51m$
Spring	00:31 March 21, 2003	

This will be the case no matter how we "tilt" the equinox/solstice "crosshair".

In order to improve the predictive power of the model we continue to move the Sun uniformly along the circle. However, we now position the Earth at the point (d,0). Assume that $V=(\cos(\alpha),\sin(\alpha))$. With this 2-parameter model we can vary the lengths of the predicted seasons. For example, by setting d=.2 and $\alpha=\pi/6$ we obtain



By moving the Earth to (.2,0) we have increased the predicted length of summer (good) and autumn (not good) and decreased the predicted length of winter (good) and spring (not good). The question before us is how to best choose d and α so as to minimize

$$\phi(d, \alpha) = \max\{ |T_V - \hat{T}_V|, |T_S - \hat{T}_S|, |T_A - \hat{T}_A|, |T_W - \hat{T}_W| \}$$

i.e., the maximum discrepancy between the actual season lengths T_V , T_S , T_A , and T_W and their predicted counterparts \hat{T}_V , \hat{T}_S , \hat{T}_A , and \hat{T}_W .

Our approach will be to use the Matlab one-dimensional minimizer fmin alternately applied to the functions

$$f_{\alpha}(d) = \phi(d, \alpha)$$
 α fixed

and

$$f_d(\alpha) = \phi(d, \alpha)$$
 d fixed

Write a function [dnext,alphanext] = Update(d,alpha) that

- Uses fmin to compute d_{next} so that $f_{\alpha}(d_{next})$ is the minimum value of $f_{\alpha}(d)$ as d ranges across the interval [-1,1].
- Uses fmin to compute α_{next} so that $f_{d_{next}}(\alpha_{next})$ is the minimum value of $f_{d_{next}}(\alpha)$ as α ranges across the interval $[0, 2\pi]$.

A function

```
function [x,y] = CirclePoints(d,alpha)
% Determines the equinox and solstice points for the eccentric model
% with displacement d and rotation alpha.
%
% x and y are row 4-vectors with the property that
%
% (x(1),y(1)) = coordinate of the Vernal Equinox point
% (x(2),y(2)) = coordinate of the Summer Solstice point
% (x(3),y(3)) = coordinate of the Autumnal Equinox point
% (x(4),y(4)) = coordinate of the Winter Solstice point
```

encapsulates a lot of the underlying trigonometry and is provided on the website. You may find it handy to write a function sE = SeasonLength(d,alpha) that returns a 4-vector of season lengths. This makes it easy write f_{α} and f_{d} . Use

$$T_V = 92.7556$$
 $T_S = 93.6507$ $T_A = 89.8424$ $T_W = 88.9938$

and a total year length Y=365.2425. Note that if \overline{VS} is the arclength from V to S then $\hat{T}_S=Y\cdot \overline{VS}/(2\pi)$. To compute the arc length you might want to work with the arcsin function as in and the isoceles triangle defined by (0,0), V and A. Obtain similar expressions for the other predicted season lengths.