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Statistical Inference

• Data generated from unknown probability 
distribution and statement on the unknown 
distribution are warranted. Determine 
parameters (e.g. β for exponential 
distribution, µ and σ for normal 
distribution)

• Prediction of new experiments
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Estimation of parameters
• Notation: f(x|θ) is the probability density of sampling

x given (conditioned on) parameters θ.
• For a set of n independent and identically distributed 

samples the probability density is:

• However, what we want to determine now are the 
parameters… For example assuming the distribution 
is normal, we seek the mean µ and the variance σ2
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Bayesian arguments

• What we want is the function                 
given a set of observations x, what is the 
probability that the set of parameters is θ ?

• Bayesian statistics: Think of the 
parameters like other random variables 
with probability ξ(θ).

( )|f θ x

( ) ( ) ( )
( ) ( ) ( )

The joint probability , |  is also

, |

f f

f f g

θ θ ξ θ

θ θ
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≡

x x

x x x
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The likelihood function
• We can formally write                               

which is the probability of having a particular set 
of parameter for the p.d.f provided a set of 
observation (what we wanted). Note that our 
prime interest here is in the parameter set θ
and the samples of x is given. Since g(x) is 
independent of θ we can write the likelihood 
function

( ) ( ) ( )
( )

|
|

f
g
θ ξ θ

ξ θ =
x

x
x

( ) ( ) ( )| |fξ θ θ ξ θ∝x x
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Example: Likelihood function I

• Consider the exponential distribution

• And assume the p.d.f. of the parameter β is a 
Gaussian with a mean and variance of 1.
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Example: Likelihood function II
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Maximum Likelihood

( ) ( )( )We look for a maximum of the function log |  

as a function o fthe parameters 
nL fθ θ

θ

= x

As a concrete example we consider the normal distribution
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To find the most likely set of parameters we determine 
the maximum of L(θ)
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Maximum of L(θ) for normal 
distribution
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Determine a mot likely parameter for 
the uniform distribution

( )

( ) ( )
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It is clear that θ must be larger than all the xi and at the same time maximizes 
the monotonically decreasing function        , hence  1 nθ

[ ]1max ,..., nx xθ =
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Potential problems in maximum likelihood 
procedure

• Value of θ is underestimated (note that θ should be larger than all x, not 
only the ones we sample so far)
•No guarantee that a solution exists for the distribution below θ must be 
large than any x but at the same time equal to the maximal x. This is not 
possible and hence, no solution

•The solution is not necessarily unique

( )
1 for 0

|
0 otherwise

x
f x

θ
θ θ

⎧ ⎫< <⎪ ⎪= ⎨ ⎬
⎪ ⎪⎩ ⎭

( ) ( )

( ) ( ) ( )

( ) ( )

1 1

1 1

1 for 1 i=1,...,n
|

0 otherwise

1 for max ,..., 1 min ,...,
|

0 otherwise

max ,..., 1 min ,...,

i
n

n n
n

n n

x
f

x x x x
f

x x x x

θ θ
θ

θ
θ

θ

⎧ ≤ ≤ + ⎫
= ⎨ ⎬
⎩ ⎭

⎧ − ≤ ≤ ⎫
⇒ = ⎨ ⎬

⎩ ⎭
⇒ − ≤ ≤

x

x



39

The χ2 distribution with n
degrees of freedom

( ) ( )
( ) ( )/2 1

/2

1 exp 2                 0
2 2

n
nf x x x x

n
−= − >

Γ

( ) ( )    var 2E x n x n= =

There is a useful relation between the χ2 and the normal 
distributions
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Theorem connecting χ2 and normal distributions

If the random variables X1,…,Xn are i.i.d. and if each of 
these variables has standard normal distribution, then 
the sum of the squares

Has a χ2 distribution with n degrees of freedom

2 2
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The p.d.f is obtained by differentiating both side '

' . Note 2 exp / 2 . We have
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Normal distribution: Parameters
Let X1,…,Xn be a random sample from normal distribution having mean

µ and variance σ2 . Then the sample mean (hat denotes M.L.E)

and the sample variance

are independent random variables. 

has a normal distribution with a mean µ and variance σ2/n.

has a chi-square distribution of n-1 degrees of freedom 
Why n-1 ? (next slide)
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Parameters of the normal 
distribution: Note 1

• Let                 be a vector of random number of 
length n sampled from the normal distribtuion

• Let             be another vector of n random 
numbers, related to the previous vector by  linear 
transformation A (AAt=I)

• Consider now the calculation of the variance 
(next slide)

1,..., nx x

1,..., ny y

=y Ax
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Variance
• The formula we should use for the variance

• However, we do not know the exact mean, and 
therefore we use

• What are the consequences of using this 
approximation?
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Variance is not changing upon 
linear transformations

• Consider the expression

• The analysis is based on the unitarity of A. 
Hence, linear transformation dos change the 
variance of he distribution. This makes it 
possible to exploit the difference between 

( ) ( ) ( )

( ) ( ) ( )
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The n-1 (versus n) factor
• Since A is arbitrary ( as long as it is unitary). We can 

choose one of the transformation vectors a to be 
(1,…,1)/n1/2

• The scalar product 

• Is identically zero (remember how we compute the 
mean?) 

• Hence since we computed the average from the same 
sample we computed the variance, the variance lost one 
degree of freedom.

0t
nX X− =a a
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The n-1 factor II

• Note that the n-1 makes sense. Consider 
only a single sample point, which is of 
course very poor and leaves a high degree 
of uncertainty regarding the value sof the 
parameters. If we use n then the estimated 
variance becomes zero, while if we use n-
1 we obtain infinite, which is more 
appropriate to the problem at hand, for 
which we have no information to 
determine the variance
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The t distribution
(in preparation for confidence 

intervals)
• Consider two random variables Y and Z, such 

that Y has chi-2 distribution with n degrees of 
freedom and Z has a standard normal 
distribution the variable X is defined by

Then the distribution of X is the t distribution with n 
degrees of freedom. 

1/ 2
YX Z

n
⎛ ⎞= ⎜ ⎟
⎝ ⎠



48

The t distribution
• The function is tabulated and can be written in terms 

of Γ function

• The t distribution is approaching the normal 
distribution as                    . It has the same mean 
but longer tails.
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Confidence Interval

• Confidence interval provide an alternative 
to the use of estimator instead of the 
actual value of an unknown parameter. 
We can find an interval (A,B) that we think 
has high probability of containing the 
desired parameter. The length of the 
interval gives us an idea how well we can 
estimate the parameter value.
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Confidence interval for the mean of 
the normal distribution

• Let                    for a random sample from a normal 
distribution with unknown mean and unknown variance. 
Let tn-1(x) denote the p.d.f of the t distribution with n-1 
degrees of freedom, and let c be a constant such that

• For every value of n, the value of c can be found from 
the table of the t distribution to fit the confidence 
(probability) γ

1,..., nX X

( )1

c

n
c

t x dx γ−
−
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