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1. The car is driving at a constant speed. In that case it is equally likely to find it 

anywhere in the circle. If the radius of the circle is R the total length of the circle 
is 2*pi*R. The number of radians of the circle is 2*pi. Counting the distance in 
radians the pdf is 1/(2*pi). The probability is Integral from 1 to 2 of (1/(2*pi) 
d(rad) = (2-1)/(2*pi) = 1/(2*pi) 

2. The probability of a single point on the continuous line is zero. I.e. the probability 
of observing 0.75 exactly when sampling from a uniform continuous distribution 
between 0 and 1 is exactly zero. 

3. If the protein folds at a constant rate then the number of molecules dN that fold at 
an interval time dt is given by -dN = N*alpha*dt , where N is the number of 
molecules that did not fold and dN is therefore the loss of unfolded molecules to 
folded molecules -> -dN/N = alpha*dt -> -d(log(N)) = alpha*dt -> 

     N = N0*exp(-alpha*t). N is the number of molecules that did not fold, to find out 
the number of molecules that fold we subtract it from the total of N0  
N0(1-exp(-alpha*t)). The probability that all N0 molecules will fold after time t is 
therefore 1-exp(-alpha*t) 
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1. If we use the length of the arc, then the probability density is given by ( ) 1
2

f x
aπ
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we use radians, then the probability density is ( ) 1
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depends on the presentation of the space 
 
2, We consider the probability density ( )f x  which is non-zero in the interval [0,1]. 

( ) 1/32
3

f x x−= . Close to zero the probability density function is approaching a value of 

infinite. Does it violate what we know about probabilities? No! since the probability must 
be defined on an interval (even very small) and the above probability density is 
integrable. For example, consider a small interval ε  near zero. The probability (not the 

probability density!) of  finding a sample at the interval [ ]0,ε  is 1/3 2 /3 2 /3
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which is obviously a finite number. Is a probability density 1 x  allowed in the same 
interval? 
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Slide 11: Normalizing the normal distribution – 
Consider the probability density functions of two continuous random variables ,X Y . 
One of the p.d.f is ( )f X  and the second is ( )f Y . Assume further that they are identical 

and are analytically given by ( ) ( )
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(note that we have an example here of a p.d.f of more than one variable) This is an 
integral on an infinite two dimensional plan. Rather than using the Cartesian coordinates 

,x y  one can use polar coordinates to do the same integral. (this coordinate 
transformation are very useful in transforming random variables from one p.d.f to 
another. We define 2 2r x y= +  and ( )arctan /y xθ =  to re-write the integral as a sum 

over circular bands ( )2 r drπ ⋅ ⋅  instead of squares ( )dx dy⋅ . We 

have
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Normalization confirmed. 
(note that “somehow” in the variable 2r  we obtained the exponential distribution instead 
of the normal distribution. This small calculation can serve as an example of how we can 
switch from one type of distribution to another. More in the section) 
 
 
 
Slide 19: Expectation value of variance – shows that it is always positive 
Here is a slight detour. Write 
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After Slide 22  
SIDE STORY: Volume filled by a diffusing particle.  
Consider am unfolded protein molecule is executing a diffusive motion (until it hits a 
chaperone). A diffusive motion can be modeled as a sequence of uncorrelated 
displacements, each of them sampled from a normal distribution in three dimensions. Let 
the displacement of step i be ( ), ,i i i ix y z∆ = ∆ ∆ ∆  which is considered as a random vector 
(three independent random variables). The probability of a particular displacement is 
given by  
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What is the volume covered by the particle after N steps? 
 
It is useful to characterize the volume of a “walk” by the average end to end distance. If 

0X  is the position at the beginning (which we arbitrarily set to ( )0,0,0  and NX  the 
position by the end of the walk, the end to end distance is 
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We will compute the average of the square of the end-to-end distance and considering 
taking root only after the averaging. This will give an estimate of the size of a distribution 
of walks.  We have 
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As a next step we consider the explicit evaluation of the “core” integral  
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The typical end-to-end distance is proportional to N  and not N  (the number of steps. 
It is also does not seem to depend strongly on the dimensionality of the system. 
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For ( )E X t>  (which is not interesting) the right hand side of the equation 

( ) ( )Pr X t E X t≤ ≤  is larger than one. The distribution function is at most one, so no 
new information here. 
 


