
“Nice” plotting of proteins: I 
 
A widely used display of protein shapes is based on the coordinates of the alpha carbons -
- Cα -s. The coordinates of the Cα -s are connected by a continuous curve that roughly 
follows the direction in space of the protein chain.   
 
 
Each amino acid has only one alpha carbon and the distance between sequential Cα -s is 
about 3.8 angstrom. There is only one exception to the 3.8 “rule”, which is the cis isomer 
of proline for which the distance is smaller than the above. 
 
The uniform distribution of the Cα -s along the protein curve makes plots of the protein 
backbone relatively easy to do. The simplest solution (that we used already) is to connect 
the coordinates by a straight line interpolating from one Cα  to the next. This procedure 
creates a zigzag line, which is ok, but not great and not pleasing to the eye. “Staring” at 
proteins shapes and looking for interesting features can be difficult (examples for 
interesting features are structural domains that are shared between the proteins, similar 
active sites of evolutionary related proteins, etc). There are many automated algorithms to 
look for the features mentioned above. However, the “human eye” is in many cases a 
better detection device. 
 
Therefore, producing better pictures of protein chains is likely to help basic research in 
this area. One thing that our eyes “do not like” is discontinuous derivatives. The eye can 
detect second order derivative that is not continuous.  The curve of the protein chain, 
which we plot in three dimensions by connecting linearly the Cα -s, is discontinuous in 
the first derivative. Here we seek another representation that will make the protein curve 
differentiable at least to a second order. That is, we are facing with the topic of 
interpolation between points (the Cα -s positions) that represent a curve. 
 
Interpolation 
 
The first approach to interpolation that we consider is the use of polynomials. A set of 
points ( ){ } 1

N
i i i

x y
=

 can be approximated by a polynomial y  and a variable x  
2 3

0 1 2 3 ... n
ny c c x c x c x c x= + ⋅ + ⋅ + ⋅ + +  

 
An alternative representation of the n th−  order polynomial is  
 

( )( )( )( )0 1 2 ...y c c c x x= + + +  

 
or yet another representation using the roots of the polynomial 
 

( ) ( )1 ...n ny c x r x r= − −  



 
(Note that in creating a protein curve we need to consider three functions. A function for 
each of the coordinates , ,x y  and z . The curve will be parameterized with independent 
continuous variable t  that is equal to the amino acid index i  at the coordinates of ( )C iα . 
Hence, we compute the continuous curves ( ), ( ), ( )x t y t z t . The polynomial is continuous 
and differentiable at all orders and therefore suggests itself as a plausible representation 
of the protein curve). 
 
In MATLAB we can obtain the roots of the polynomial by the “roots” command. For 
example, consider the polynomial below: 
 

3 25 2y y y= ⋅ + +  
 
The “roots” command finds the zeroes of the polynomial 
 
>> roots([5 1 0 2]) 
 
ans = 
 
  -0.8099           
   0.3049 + 0.6332i 
   0.3049 - 0.6332i 
 
The roots determine the polynomial up to a constant multiplier. The command “poly” 
creates the polynomial from the root: 
>> poly(roots([5 1 0 2])) 
 
ans = 
 
    1.0000    0.2000    0.0000    0.4000 
 
The polynomial so created (always) has a coefficient 1nc = , to recover the original 
polynomial we need to multiply all coefficients by the original nc , and by 5 in the 
specific example above. 
 
How to compute polynomials efficiently? 
 
Here is a MATLAB loop that computes 2 3

0 1 2 3 ... n
ny c c x c x c x c x= + ⋅ + ⋅ + ⋅ + +  

The coefficients are stored in a vector c  of length 1n +  
 
len= length(c); 
polynomial = c(1); 
ym=1; 
for i=2:len 



 ym = y * ym; 
 polynomial = polynomial + c(i)*ym; 
end 
  
The number of operations to compute the value of the polynomial is (len-1)*3 
 
It is possible to compute the polynomial more efficiently by using the equivalent formula 

( )( )( )( )0 1 2 ...y c c c x x= + + +  

 
We have: 
 
len= length(c); 
polynomial = c(len); 
for i=len-1:-1:1 
 polynomial = polynomial*y + c(i); 
end 
 
Only (len-1)*2 operations are required this time, so this is clearly a better way of 
computing values of the polynomial. 
 
Yet another formulation (Newton representation) is given below. Consider the 
interpolation between four points ( ){ }4

1
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. In the Newton representation we write the 
polynomial as: 
 

( ) ( )( ) ( )( )( )1 2 1 3 1 2 4 1 2 3y c c x x c x x x x c x x x x x x= + − + − − + − − −  
 
To determine the coefficients ic  we use the four points 
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( ) ( )( )
( ) ( )( ) ( )( )( )
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2 1 2 2 1

3 1 2 3 1 3 3 1 3 2

4 1 2 4 1 3 4 1 4 2 4 4 1 4 2 4 3
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y c c x x

y c c x x c x x x x

y c c x x c x x x x c x x x x x x

=

= + −

= + − + − −

= + − + − − + − − −

 

 
This set of linear equations (for the ic ) is relatively easy to solve. In a matrix form we 
write: 

( )
( ) ( )( )
( ) ( )( ) ( )( )( )

1 1

2 1 2 2

3 1 3 1 3 2 3 3

4 1 4 1 4 2 4 1 4 2 4 3 4 4

1 0 0 0
1 0 0
1 0
1

c y
x x c y
x x x x x x c y
x x x x x x x x x x x x c y

⎡ ⎤ ⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥ ⎢ ⎥−⎢ ⎥ ⎢ ⎥ ⎢ ⎥=
⎢ ⎥ ⎢ ⎥ ⎢ ⎥− − −
⎢ ⎥ ⎢ ⎥ ⎢ ⎥− − − − − − ⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎣ ⎦ ⎣ ⎦⎣ ⎦

 

 
It is obvious that 1 1c y= , substituting we obtain the following linear equation 



 

( )
( ) ( )( )
( ) ( )( ) ( )( )( )

1 1

2 1 2 2 1

3 1 3 1 3 2 3 3 1

4 1 4 1 4 2 4 1 4 2 4 3 4 4 1

1 0 0 0
0 0 0
0 0
0

c y
x x c y y
x x x x x x c y y
x x x x x x x x x x x x c y y

⎡ ⎤ ⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥ ⎢ ⎥− −⎢ ⎥ ⎢ ⎥ ⎢ ⎥=
⎢ ⎥ ⎢ ⎥ ⎢ ⎥− − − −
⎢ ⎥ ⎢ ⎥ ⎢ ⎥− − − − − − −⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎣ ⎦ ⎣ ⎦⎣ ⎦

 

 
 
By dividing line 2,3, and 4 by ( )2 1x x− , ( )3 1x x−  and ( )4 1x x−  respectively, we obtain 

( )
( ) ( )( )

1 11

2 21

3 2 3 31

4 2 4 2 4 3 4 41

1 0 0 0
0 1 0 0
0 1 0
0 1

c y
c y

x x c y
x x x x x x c y

⎡ ⎤ ⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥=
⎢ ⎥ ⎢ ⎥ ⎢ ⎥−
⎢ ⎥ ⎢ ⎥ ⎢ ⎥− − − ⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎣ ⎦ ⎣ ⎦⎣ ⎦
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. The last matrix equation provides an immediate solution for the 

coefficient 2c . The same type of process can be repeated to determine other coefficients. 
 
This brings us to a large set of problems of solving linear equalities of the type Ax b=  
where x  is a vector of unknown of length n , b  is a vector of parameters of the same 
length and A  is an n n×  matrix. A simple case to star with is of triangular matrices (this 
includes the case which we just studied). 
 
Triangular problems 
 
Example 

11 1 1

21 22 2 2

31 32 33 3 3

0 0
0

a x b
a a x b
a a a x b

⎛ ⎞⎛ ⎞ ⎛ ⎞
⎜ ⎟⎜ ⎟ ⎜ ⎟=⎜ ⎟⎜ ⎟ ⎜ ⎟
⎜ ⎟⎜ ⎟ ⎜ ⎟
⎝ ⎠⎝ ⎠ ⎝ ⎠

 

which is rather easy to solve. We can immediately write 1 1 11x b a= ⋅ . Using the (now) 
known value of 1x  we can write for 2x , ( )2 2 21 1 22x b a x a= − ⋅ . Similarly we can write for 

3x , ( )3 3 31 1 32 2 33x b a x a x a= − ⋅ − ⋅  
 
For the general case we can write an implicit solution (in terms of the “earlier” 

    1,..., 1jx j i= − ) 
1

1

i

i i ij j ii
j

x b a x a
−

=

⎛ ⎞
= − ⋅⎜ ⎟
⎝ ⎠

∑  

 
Note that a similar procedure applied to the upper triangular matrix 



11 12 13 1 1

22 23 2 2

33 3 3

0
0 0

a a a x b
a a x b

a x b

⎛ ⎞⎛ ⎞ ⎛ ⎞
⎜ ⎟⎜ ⎟ ⎜ ⎟=⎜ ⎟⎜ ⎟ ⎜ ⎟
⎜ ⎟⎜ ⎟ ⎜ ⎟
⎝ ⎠⎝ ⎠ ⎝ ⎠

 

 
To solve a general linear problem we search for a way of transforming the matrix to a 
triangular form (which we know already how to solve). Formally, we seek the so-called 
LU  decomposition in which the general A matrix is decomposed into a lower triangular 
matrix L , and an upper triangular matrix U  ( A LU= ). Note that if such a 
decomposition is known, we can solved the linear problem in two steps 
 
Step 1. 

( )
       find  using the lower triangular matrix 

Ax b
LUx b
L Ux b
Ly b y L

=
=

=

=

 

 
Step 2. 

    find x using the upper triangular matrix Ux y U=  
 
A way of implementing the above idea in practice is using Gaussian elimination. 
Gaussian elimination is an action that leads to a LU  decomposition discussed above, 
even if the analogy is not obvious. In this course we will not prove the equivalence. 
 
Gaussian elimination 
Consider the following system of linear equations 

x x x x x x x
x x x x x x x
x x x x x x x
x x x x x x x
x x x x x x x

⎛ ⎞⎛ ⎞ ⎛ ⎞
⎜ ⎟⎜ ⎟ ⎜ ⎟
⎜ ⎟⎜ ⎟ ⎜ ⎟
⎜ ⎟⎜ ⎟ ⎜ ⎟=
⎜ ⎟⎜ ⎟ ⎜ ⎟
⎜ ⎟⎜ ⎟ ⎜ ⎟
⎜ ⎟⎜ ⎟ ⎜ ⎟
⎝ ⎠⎝ ⎠ ⎝ ⎠

 

where x  denotes any number different from zero.  
We can eliminate the unknown 1x  from rows 2 to n (the general matrix is of size n n× ). 
We multiply the first row by 1 11ia a  and subtract the result from row i . By repeating the 
process 1n −  times we obtain the following (adjusted) set of linear equations that has the 
same solution 

0
0
0
0

x x x x x x x
x x x x x x
x x x x x x
x x x x x x
x x x x x x

⎛ ⎞⎛ ⎞ ⎛ ⎞
⎜ ⎟⎜ ⎟ ⎜ ⎟
⎜ ⎟⎜ ⎟ ⎜ ⎟
⎜ ⎟⎜ ⎟ ⎜ ⎟=
⎜ ⎟⎜ ⎟ ⎜ ⎟
⎜ ⎟⎜ ⎟ ⎜ ⎟
⎜ ⎟⎜ ⎟ ⎜ ⎟
⎝ ⎠⎝ ⎠ ⎝ ⎠

 



We can work on the newly obtained matrix in a similar way to eliminate 2x  from row3 3 
to n. This we do by multiplying the second row by 2 22ia a  and subtract the results from 
rows 3 to n. The (yet another) new matrix and linear equations will be of the form  
 

0
0 0
0 0
0 0

x x x x x x x
x x x x x x

x x x x x
x x x x x
x x x x x

⎛ ⎞⎛ ⎞ ⎛ ⎞
⎜ ⎟⎜ ⎟ ⎜ ⎟
⎜ ⎟⎜ ⎟ ⎜ ⎟
⎜ ⎟⎜ ⎟ ⎜ ⎟=
⎜ ⎟⎜ ⎟ ⎜ ⎟
⎜ ⎟⎜ ⎟ ⎜ ⎟
⎜ ⎟⎜ ⎟ ⎜ ⎟
⎝ ⎠⎝ ⎠ ⎝ ⎠

 

It should be obvious how to proceed with the elimination and to create (an upper) 
triangular matrix that we know by now how to solve. 


