
Structural Overlap 
 
Consider the two shapes below 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
We should be able to detect the similarity between the fragments (helices), and point to 
the loop as the structural segment that deviates the most, regardless of the sequence. 
Since the identities of the amino acids are not used (only the Cα  positions) highly remote 
evolutionary connections may be observed. This is our final goal. We start however with 
the (much) simpler case of overlapping proteins of the same length (no alignment is 
necessary just proper measure of their distance). 
 
Computing the distance between protein structures 
 
We consider two proteins A  and B  with the same number of amino acids n  (the 
question of alignment of two structures with different number of amino acids will follow 
the simpler case of overlap). The coordinate vectors of protein A  and B  are denoted by 

AX  and BX  respectively. Each of these vectors is of length 3n  including the (x,y,z) 
(Cartesian) positions of the Cα -s of the amino acids.  The rank 3 vector of amino acid i  
in structure A  is denoted by A

ir . The distance between the two structures D  is defined 
(and written explicitly as) 
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Hence we think on the two proteins as a collection of points, or alternatively as a point in 
3n  space for which we compute norm two of the vector difference 

2A BX X−  
 
Since the coordinates are defined in Cartesian space, it is possible to translate or rotate 
one of the structures with respect to the other without changing any of the internal 



distances between the points that belong to the same object, the protein. That is, 
maintaining its rigid shape. For simplicity we will always move structure A . 
 
We will consider the translation and the rotation separately. A translation is defined by 
adding to each of the A

ir  vector a single constant vector t . A rotation is defined by 
multiplying a coordinate vector by a 3x3 matrix U  (e.g. A

iUr ). U  satisfies 1tUU =  and 
det( ) 1U =  the usual condition on a rotation matrix that we discussed earlier. 
 
 
Let us start with the simpler problem, that of translation. We wish to determine a vector 
of translation t  that will be added to each of the atom in protein A  so that 2D  is 
minimal. This is trivial 
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Hence, all we need to do is to correct the position of A

ir  by the difference in the 
geometric centers of the two proteins ( ) ( ) and   A B

gc gcr rη η . After doing this we will be ready 
to consider the more interesting problem of overlapping two structures, the problem of 
rotation.  
 
In fact, to make sure that the next item on the agenda is pure rotation we will set the two 
geometric centers of the two proteins to zero. In the following derivation we assume that 
this was already done. We will keep the same notation of A

ir  and B
ir  for the vectors with 

the adjusted translation.  
 
To correct for possible rotations we write yet another optimization problem. The 
unknown below is the rotation matrix U . The structures are known and are presumed 
rigid. The distance between the two structures is a function of the rotation matrix, and we 
need to pick such a rotation that makes the distance as small as possible (minimal). As we 
shall see this problem has a unique solution that will be extremely useful for further 
analysis. Of course the rotation matrix U  cannot be any matrix it must satisfy the 
obvious conditions we stated earlier. It must keep the overall shape of the protein the 
same (hence the proteins must be rotated with respect to each other as rigid bodies). We 
therefore must have tUU I= to preserve all the internal distances in the protein . We also 



must avoid reflection ( )( )det 1U =  since reflection changes the so-called “chirality” of 
proteins and their chemical identity. We shall deal with distance conservation first 
( tUU I= ) and only later return to the reflection problem ( )( )det 1U = . 
 
After the lengthy introduction here is the optimization task that we are facing: Minimize 

2D  as a function of the matrix U . U  is a rotation matrix.  
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We have used the notation ( )
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Note that the condition tUU I=  is a constraint on a matrix, or alternatively 9 different 
equations (an equation for each of the elements in the matrix). Some of the conditions are 
redundant, how many? 
 
Using the “mechanic” of the Lagrange’s multipliers we introduced earlier, we add the 
constraints to the target function that we wish to optimize. 
 
 

2

,
( )ij ki kj ij

i j k
F D u u δ= + Λ −∑ ∑  

 
The unknowns that we wish to determine are all the elements of the U matrix (9 in all). 
However, the constraints reduce the number of unknown to 3. This must be the case since 
are we argued earlier a rotation is completely determined once three parameters (three 
rotations angles) are given. 
 
To find the minimum of 2D  subject to the constraint of unitary matrix U  (another way 
of saying tUU I= ), we differentiate with respect to the matrix element iju , we have 
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We now define two matrices 
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