
More on overlapping shapes (part II) 
 
Note that ijS is a symmetric matrix while ijR  is not. It is also interesting to note that the 

matrix of the Lagrange multipliers -- ( )ij ij
λ = Λ  is symmetric too. Can you prove it? 

 

With the help of the above definition we can write 0
ij
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∂
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 in a more compact form  

 
( ) 0U S R+ Λ − =  

 
We have one matrix equation with two unknown matrices (!) -- U  and Λ . Of course, 
things are not so bad since we still have the constraint equation: 1tUU =  
Note also that ( )S + Λ  is a symmetric matrix. On the other hand R  is not symmetric 
which makes our problem a little more interesting. The following trick will eliminate 
some of our problems: Multiply the last equation by its transpose: 
( ) ( )t t tS U U S R R+Λ +Λ =  
 
and using 1tU U =  (our favorite constraint) eliminates U  from the equation. This does 
not seem like a positive step since the rotation matrix U  is what we are after… 
Nevertheless, some insight to the problem will be given from the equation below 
 
 
( )( ) tS S R R+ Λ +Λ =  
 
The eigenvectors of ( )S + Λ  -- ka  are the same as the eigenvectors of tR R  (assuming no 

eigenvalue degeneracy for the symmetric matrix ( )S + Λ ). The eigenvalues of tR R  are 
2
kµ . The corresponding eigenvalues of ( )S + Λ  are therefore 

 
( ) k k kS a aµ+ Λ = ±   (the eigenvalues of the symmetric matrix must be real but since we 
have only the eigenvalues of the square of the matrix, the eigenvalues themselves are 
determined only up to a sign) 
 
We now use the eigenvectors ka  to reconsider the matrix equation after multiplying from 
the right with ka  

( ) k kU S a Ra+ Λ =  

Since ka  is an eigenvector of ( )S + Λ  we can also write 

( )k k kU a Raµ± =  



We have three orthogonal eigenvectors  1, 2,3ka k = . The rotation matrix U  transforms 
these three vectors to another set that we call  1, 2,3kb k = . Note that the kb  set is also a 
set of orthogonal vector. This is easy to appreciate as follows: 
( ) ( ) ( ) ( )t t t t t

i j i j i j i j ijb b Ua Ua a U Ua a a δ= = = =  
Using the " "b  notation we can also write 
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Note that right hand side includes only known (by now) entities. So we can use R , ka  
and kµ  to compute the kb -s. Since we also knows that  

k kUa b=  
We can reconstruct the rotation matrix as a solution to the above equation, i.e., 
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where we have used the orthogonality of the ka -s. This “optimal” U  can be plugged in 
the initial equation for the distance to compute the “optimal” distance. There is however a 
few more subtle points that are discussed below, and we postpone for the moment the 
calculation of the distance. 
 
We note that we can also write an expression for the matrix R  in terms of the two sets of 
vectors 

( )
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A few more comments:  The set of orthonormal vectors kb  is obtained by rotating the set 

ka  with the (unknown) U . However the kb are also the “left” eigenvectors of R . The 
right and the left eigenvectors, and the eigenvalues can be obtained directly from Singular 
Value Decomposition (SVD) of the asymmetric matrix R . Using SVD (without going 
into details exactly what it means) is the simplest approach to our problem using the 
facilities and the resources of MATLAB. 
 
Finally our optimal distance can be computed more directly without thinking on U  at all 
(of course to make a nice plot of overlapping structures requires the rotation matrix. In 
contrast to the argument below the rotation matrix is also required to avoid inversion): 
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where we have used the known forms of U  and R  in terms of the vectors ka  and kb  to 
arrive at the final amazingly simple expression in the last line. Since the sum 

( ) ( )2 2A B
n n

n
r r+∑  is a constant, the only term that can make a difference is the 2 k

k
µ− ±∑ . 

If we wish (and we do!) to make the distance as small as possible we should only positive 
values for the kµ . Hence to compute the minimal distance we need to compute only the 
eigenvalues of tR R  and not the eigenvectors.  
 
There is however one caveat. So far we made sure that the constraint tUU I=  is 
satisfied, however, we did not take care of the second condition for a proper rotation 

( )det 1.U =  It is possible that the rotation matrix defined by 
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determinant of –1. This can be tested for by explicit construction of the rotation matrix 
and calculation of the determinant.  
 
What are we going to do if the determinant is negative? 
 
We clearly need to modify the rotation matrix to have a determinant of +1. This is the 
place where we can go back and re-investigate the ±  sign we have before the eigenvalue. 
The smallest possible distance between the structures will be obtained for all positive 
eigenvalues (choosing only the + sign). However, if the rotation is not proper (determinat 
is equal to –1), we may need to compromise on something else. We can change the sign 
of the determinant by changing the sign of the vector kb  to kb− . A negative eigenvalue 

kµ−  means that we also change the sign of the “secondary” eigenvector kb  to kb− . (Note 

k k kRa bµ=  if we change the sign of the vector kb  we must change the sign of the 
eigenvalue to maintain the equality i.e. ( ) ( )k k kRa bµ= − ⋅ − .  Since the eigenvalues of U  

are all of norm 1, changing the sign of one the left eigenvectors ( )kb  changes the sign of 
the corresponding eigenvalue and the sign of the determinant (as desired). The distance 
between the two proteins will not be the shortest possible after the adjustment but this is 
the price we have to pay in order to obtain a proper rotation. 


