CS 321: Numerical Methods in Computational Molecular Biology

Homework 1

Due: Thursday, Sept 1 2005 at the beginning of the section

Problem 1

Let $f(x)=Ae^{-2x}$ for 0 < x < 2 (f(x)=0 for any other value of x) be a p.d.f.

- For what value of A is f(x) a true density function?
- Using the value for A calculated above, what is the probability $P(-2 \le x \le 2)$?

Problem 2

Suppose that X is uniformly distributed on the interval (-2,3). Let $Y = X^2$

- Find the density function (p.d.f) of Y.
- Find the distribution function (c.d.f) of *Y*.

Problem 3

Suppose that X and Y are independent random variables and each is uniformly distributed on the interval (0,1). Let V=X-Y and let W=X+Y

- Find the distribution function (c.d.f) of *V*.
- Find the distribution function (c.d.f) of W.

Problem 4

Suppose that *X* and *Y* are independent random variables and each is of exponential distribution with mean $\frac{1}{3}$, i.e. $f(x) = 3e^{-3x}$ and $f(y) = 3e^{-3y}$. Let V = X + Y, let W = min(X, Y) and let Z = max(X, Y).

- Find the distribution function (c.d.f) of *V*.
- Find the distribution function (c.d.f) of W.
- Find the distribution function (c.d.f) of Z.