CS 316: Arithmetic (contd.)

Kavita Bala Fall 2007

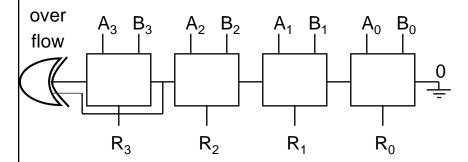
Computer Science Cornell University

Announcements

- Office Hours
 - No recitation this week; instead TAs will hold office hours and discuss

Two's Complement Addition

- Perform addition as usual, regardless of sign
 - -1 = 0001, 3 = 0011, 7 = 0111, 0 = 0000
 - --1 = 1111, -3 = 1101, -7 = 1001
- Examples
 - -1+-1=1111+0001=0000(0)
 - -3 + -1 = 1111 + 1101 = 1100 (-4)
 - -7+3=1001+0011=1100(-4)

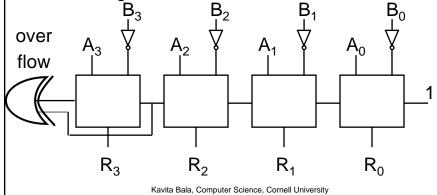

Kavita Bala, Computer Science, Cornell University

Overflow

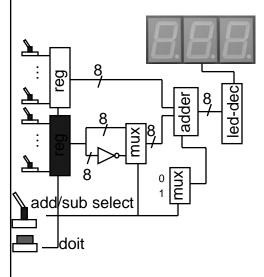
- When can it occur?
 - If you add a negative and positive number
 - Cannot occur (Why?)
 - If you add two negatives or two positives
 - Can occur (Why?)
 - Add two positives, and get a negative number
 - Or, add two negatives, get a positive number
 - Overflow!
 - Overflow when
 - Carry into most significant bit (msb) != carry out of msb

Two's Complement Adder

• Let's build a two's complement adder



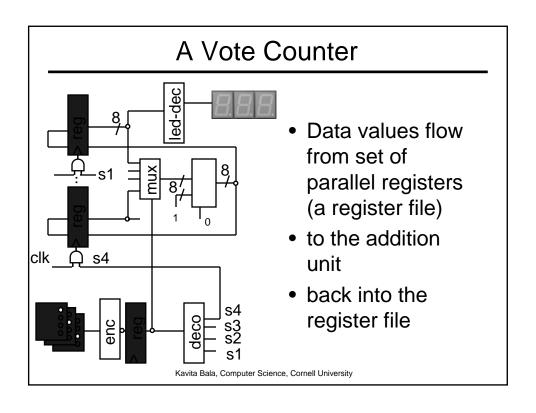
Already built, just needed to modify overflow checking


Kavita Bala, Computer Science, Cornell University

Two's Complement Subtraction

- Subtraction is simply addition, where one of the operands has been negated
 - Negation is done by inverting all bits and adding one

A Calculator

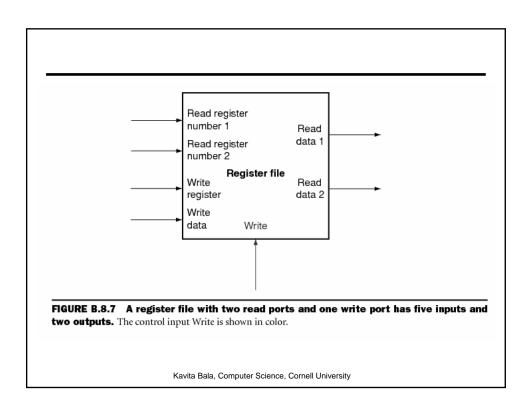


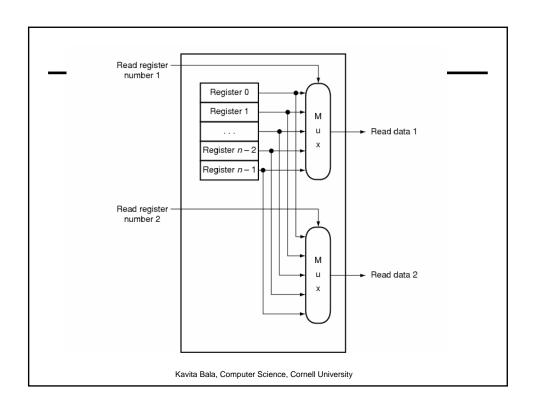
- Enter numbers to be added or subtracted using toggle switches
- Select: ADD or SUBTRACT
- Muxes feed A and B,or A and –B, to the 8-bit adder
- The 8-bit decoder for the hex display is straightforward

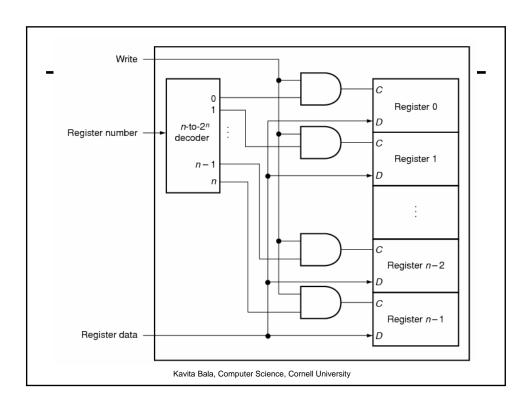
Kavita Bala, Computer Science, Cornell University

Summary

- We can now perform arithmetic
 - And build basic circuits that operate on numbers

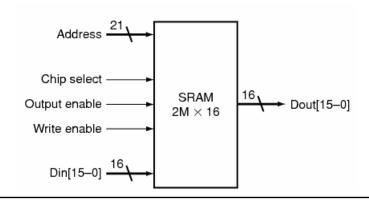

CS 316: Memory


Kavita Bala Fall 2007


Computer Science Cornell University

Register File

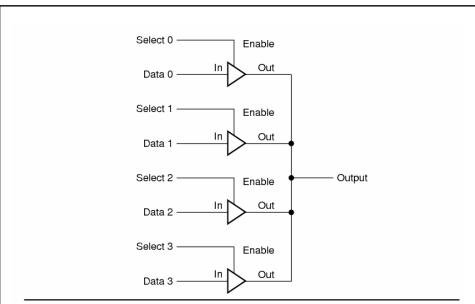
- Set of registers
 - Read or written
 - Use register number to access it
- Read or write ports
 - Decoder for each port
- D flip flops to store bits


Memory

- Various technologies
 - S-RAM, D-RAM, NV-RAM
- Non-Volatile RAM
 - Data remains valid even through power outages
 - More expensive
 - Limited lifetime; after 100000 to 1M writes, NV-RAM degrades
 - Flash cards

Kavita Bala, Computer Science, Cornell University

Static RAM: SRAM


- Static-RAM
 - So called because once stored, data values are stable as long as electricity is supplied
 - Based on regular flip-flops with gates


How to build large memories?

- Cannot use a 4M->1 multiplexer!
- Use a shared line (called bit line)
- Multiple memory cells can assert line
 - Need 3 state buffer
 - 3 states: asserted (1), deasserted (0), or high impedance

Kavita Bala, Computer Science, Cornell University

FIGURE B.9.2 Four three-state buffers are used to form a multiplexor. Only one of the four Select inputs can be asserted. A three-state buffer with a deasserted Output enable has a high-impedance output that allows a three-state buffer whose Output enable is asserted to drive the shared output line.

Big Memories

- Tri state buffer got rid of big mux
- But still need a big decoder to pick the right entry
 - 4M x 8 SRAM requires
 - 22 to 4M decoder
 - And 4M lines!
- Instead
 - Rectangular arrays
 - 2-step decode

Parallel Memory Banks

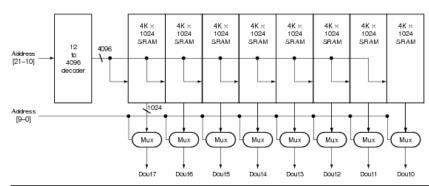


FIGURE B.9.4 Typical organization of a 4M x 8 SRAM as an array of 4K x 1.024 arrays. The first decoder generates the addresses for eight 4K x 1024 arrays; then a set of multiplexors is used to select 1 bit from each 1024-bit vide array. This is a much easier design than a single-level decode that would need either an entormous decoder or a gigantic multiplexor. In practice, a modern SRAM of this size would probably use an even larger number of blocks, each somewhat smaller.

Kavita Bala, Computer Science, Cornell University

SRAM

- Needs a few gates per cell
- Used for caches (we talk about this later)
- For higher density, use DRAM