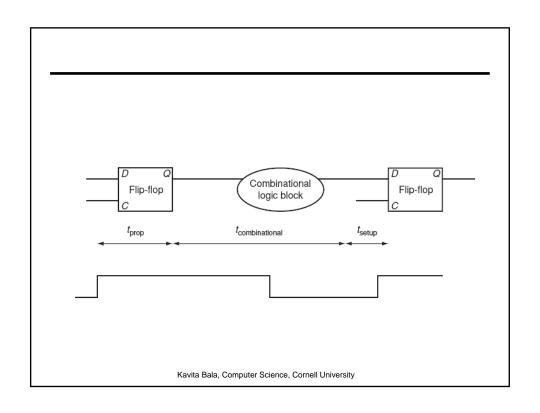
CS 316: Binary Arithmetic

Kavita Bala Fall 2007

Computer Science Cornell University



References

- Look at Appendix B in textbook
- Look in Chapter 3 in textbook for today

Kavita Bala, Computer Science, Cornell University

Recap

- We can build combinatorial circuits
 - Gates, Karnaugh maps, minimization
- · We can build stateful circuits
 - Record 1-bit values in latches and flip-flops
- Powerful combination
 - We can build real, useful devices
 - But we will often need to perform arithmetic

Binary Arithmetic

$$\frac{12}{+25}$$

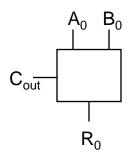
- Arithmetic works the same way regardless of base
 - Add the digits in each position
 - Propagate the carry

001100 + 011010 100110

- Unsigned binary addition is pretty easy
 - Combine two bits at a time
 - Along with a carry

Kavita Bala, Computer Science, Cornell University

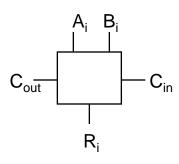
1-bit Adder



A ₀	B ₀	C _{out}	R_0
0	0	0	0
0	1	0	1
1	0	0	1
1	1	1	0

- Adds two 1-bit numbers, computes 1-bit result and carry out
- Useful for the rightmost binary digit, not much else

1-bit Adder with Carry

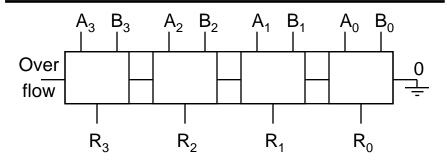


C _i	A _i	B _i	C _{out}	R _i
n				
0	0	0	0	0
0	0	1	0	1
0	1	0	0	1
0	1	1	1	0
1	0	0	0	1
1	0	1	1	0
1	1	0	1	0
1	1	1	1	1

- Adds two 1-bit numbers, along with carryin, computes 1-bit result and carry out
- Can be cascaded to add N-bit numbers

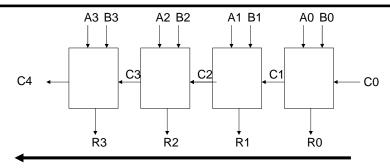
Kavita Bala, Computer Science, Cornell University

4-bit Adder



- Adds two 4-bit numbers, along with carryin, computes 4-bit result and overflow
- Overflow indicates that the result does not fit in 4 bits

4-bit Ripple Carry Adder



Carry ripples from right to left

- First adder, 2 gate delay
- Second adder, 2 gate delay

Kavita Bala, Computer Science, Cornell University

Observations

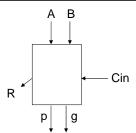
- Have to wait for Cin
- Can we compute in parallel in some way?
- CLA carry look-ahead adder

Carry Look Ahead Logic

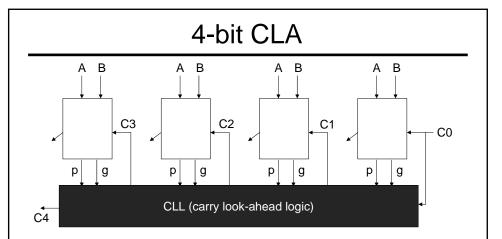
- Can we reason independent of Cin?
 Just based on (A,B) only
- When is Cout == 1, irrespective of Cin
- If Cin == 1, when is Cout also == 1

Kavita Bala, Computer Science, Cornell University

1-bit CLA adder

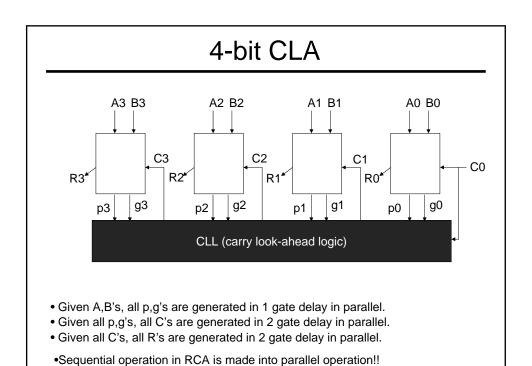


- Create two terms: propagator, generator
- g = 1, generates Cout: g = AB
 Irrespective of Cin
- p = 1, propagates Cin to Cout: p = A + B
- p and g generated in 1 cycle delay
- R is 2 cycle delay after we get Cin



- •CLL takes p,g from all 4 bits, C0 and generates all Cs
 - 2 gate delay
- C1=g0+p0C0,
- C2=g1+p1(g0+p0C0) = g1+p1g0+p1p0C0
- C3=g2+p2g1+p2p1g0+p2p1p0c0,
- C4=g3+p3g2+p3p2g1+p3p2p1g0+p3p2p1p0c0

Kavita Bala, Computer Science, Cornell University



Bigger CLAs?

- Can't do it for all 32 bits though
- So use hierarchical construction

Kavita Bala, Computer Science, Cornell University

Arithmetic with Negative Numbers

- Negative numbers complicate arithmetic
- Recall that for addition and subtraction, the rules are:
 - -Both positive => add, result positive
 - -One +, one => subtract small number from larger one
 - -Both negative => add, result negative

Arithmetic with Negative Numbers

- We could represent sign with an explicit bit
 - -the "sign-magnitude form"
 - But arithmetic would be much easier to perform in hardware if we did not have to examine the operands' signs
- Two's complement representation enables arithmetic to be performed without examining the operands

Kavita Bala, Computer Science, Cornell University

Two's Complement

- Nonnegative numbers are represented as usual
 - -0 = 0000
 - -1 = 0001
 - -3 = 0011
 - -7 = 0111
- To negate a number, flip all bits, add one
 - -1: 1 \Rightarrow 0001 \Rightarrow 1110 \Rightarrow 1111
 - -3: 3 \Rightarrow 0011 \Rightarrow 1100 \Rightarrow 1101
 - -7: 7 \Rightarrow 0111 \Rightarrow 1000 \Rightarrow 1001
 - -8: 8 \Rightarrow 1000 \Rightarrow 0111 \Rightarrow 1000
 - -0: 0 \Rightarrow 0000 \Rightarrow 1111 \Rightarrow 0000 (this is good, -0 = +0)

Two's Complement Facts

- Negative numbers have a leading 1
 - Similar to signed magnitude form
 - Largest negative=1000...0
 - Largest positive=0111...1
 - Top most bit: sign bit
- N bits can be used to represent
 - unsigned: the range 0..2N-1
 - ex: 8 bits \Rightarrow 0..255
 - two's complement: the range $-(2^{N-1})...(2^{N-1})-1$
 - ex: 8 bits \Rightarrow (10000000)..(01111111) \Rightarrow 128..127

Kavita Bala, Computer Science, Cornell University

Want to change bit size of number?

- 4 bit to 8 bit
 - For positive number, just 0's in new 4 bits
 - For negative number, 1's in new 4 bits
- What about shifting
 - sll (shift left logical)
 - sra (shift right arithmetic), srl (shift right logical)

Two's Complement Addition

- Perform addition as usual, regardless of sign
 - -1 = 0001, 3 = 0011, 7 = 0111, 0 = 0000
 - --1 = 1111, -3 = 1101, -7 = 1001
- Examples
 - -1+-1=1111+0001=0000(0)
 - -3 + -1 = 1111 + 1101 = 1100 (-4)
 - -7+3=1001+0011=1100(-4)

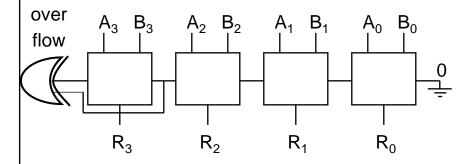
Kavita Bala, Computer Science, Cornell University

Overflow

- When can it occur?
 - If you add a negative and positive number
 - Cannot occur (Why?)
 - If you add two negatives or two positives
 - Can occur (Why?)
 - Add two positives, and get a negative number
 - Or, add two negatives, get a positive number
 - Overflow!
 - Overflow when
 - Carry into most significant bit (msb) != carry out of msb

Two's Complement Adder

• Let's build a two's complement adder

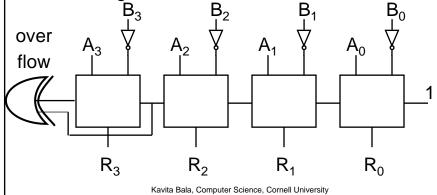


Already built, just needed to modify overflow checking

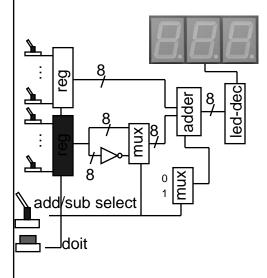
Kavita Bala, Computer Science, Cornell University

Two's Complement Subtraction

- Subtraction is simply addition, where one of the operands has been negated
 - Negation is done by inverting all bits and adding one



A Calculator



- Enter numbers to be added or subtracted using toggle switches
- Select: ADD or SUBTRACT
- Muxes feed A and B,or A and –B, to the 8-bit adder
- The 8-bit decoder for the hex display is straightforward

Kavita Bala, Computer Science, Cornell University

Summary

- We can now perform arithmetic
 - And build basic circuits that operate on numbers