
gamedesigninitiative
at cornell university

the

Game Components

Lecture 3

gamedesigninitiative
at cornell university

the

Starting Prompt

� What exactly is a game engine?
� What libraries does it have to provide?
� What tools need to come with it?

� What skills should an engine require?
� Extensive programming experience (3110+)?
� Minimal programming experience (1110)?
� No programming experience?
� Artistic ability (vs. paying for assets)?

Game Components2

gamedesigninitiative
at cornell university

the

So You Want to Make a Game?

� Will assume you have a design document
� Focus of next week and a half…

� Building off the ideas of previous lecture

� But now you want to start building it
� Need to assign tasks to the team members
� Helps to break game into components

� Each component being a logical unit of work.

Game Components3

gamedesigninitiative
at cornell university

the

Traditional Way to Break Up a Game

� Game Engine
� Software, created primarily by programmers

� Rules and Mechanics
� Created by the designers, with programmer input

� User Interface
� Coordinated with programmer/artist/HCI specialist

� Content and Challenges
� Created primarily by designers

Game Components4

gamedesigninitiative
at cornell university

the

Features of Game Engines

� Power the graphics and sound
� 3D rendering or 2D sprites

� Power the character and strategic AI
� Typically custom designed for the game

� Power the physics interactions
� Must support collisions at a bare minimum

� Describe the systems
� Space of possibilities in game world

Game Components5

gamedesigninitiative
at cornell university

the

Commercial Game Engines

� Libraries that take care of technical tasks
� But systems always need some specialized code

� Game studios buy source code licenses

� Is LibGDX a game engine?
� It has libraries for graphics, physics, and AI
� But you still have to provide code for systems

� Bare bones engine: graphics, physics, audio

Game Components6

gamedesigninitiative
at cornell university

the

Game Engines: Graphics

� Minimum requirements:
� API to import artistic assets
� Routines for manipulating images

� Three standard 3D graphics APIs
� OpenGL: Unix, Linux, Macintosh
� Direct3D: Windows
� Vulkan: The common future

� For this class, our graphics engine is LibGDX
� Supports OpenGL, but will only use 2D

Game Components7

gamedesigninitiative
at cornell university

the

Game Engines: Physics

� Defines physical attributes of the world
� There is a gravitational force
� Objects may have friction
� Ways in which light can reflect

� Does not define precise values or effects
� The direction or value of gravity
� Friction constants for each object
� Specific lighting for each material

Game Components8

gamedesigninitiative
at cornell university

the

Game Engines: Systems

� Physics is an example of a game system
� Specifies the space of possibilities for a game
� But not the specific parameters of elements

� Extra code that you add to the engine
� Write functions for the possibilities
� But do not code values or when called

� Programmer vs. gameplay designer
� Programmer creates the system
� Gameplay designer fills in parameters

Game Components9

gamedesigninitiative
at cornell university

the

Systems: Super Mario Bros.

� Levels
� Fixed height scrolling maps
� Populated by blocks and enemies

� Enemies
� Affected by stomping or bumping
� Different movement/AI schemes
� Spawn projectiles or other enemies

� Blocks
� Can be stepped on safely
� Can be bumped from below

� Mario (and Luigi) can be small, big, or fiery
Game Components10

gamedesigninitiative
at cornell university

the

Characteristics of an Engine

� Broad, adaptable, and extensible
� Encodes all non-mutable design decisions

� Parameters for all mutable design decisions

� Outlines gameplay possibilities
� Cannot be built independent of design
� But only needs highest level information

� Gameplay specification is sufficient

Game Components11

gamedesigninitiative
at cornell university

the

Data-Driven Design

� No code outside engine; all else is data
� Purpose of separating system from parameters
� Create game content with level editors

� Examples:
� Art, music in industry-standard file formats
� Object data in JSON or other data file formats
� Character behavior specified through scripts

� Major focus for alpha release
Game Components12

gamedesigninitiative
at cornell university

the

Game Components13

Popular Indie Engines

� All use data-driven design

� Most game code is scripted
� Uses easy-to-learn language
� Keeps coding at 1110-level
� Ex: GDScript, UScript

� Systems coded separately
� Uses a “real” language
� Godot: C, Unreal: C++

� But Unity uses C# for both!
� Was core to its appeal

gamedesigninitiative
at cornell university

the

Game Components14

Engine Tradeoffs

� This design has trade-offs
� Most systems are built-in
� Changing can be a fight
� Or extremely inefficient
� Designer has less control

� Why AAAs still in-house

� Example: Ubisoft Anvil
� Large, open-world games
� Ability to climb anywhere
� This is all core gameplay
� Cannot just add this on

gamedesigninitiative
at cornell university

the

Game Components15

Engine Tradeoffs

� This design has trade-offs
� Most systems are built-in
� Changing can be a fight
� Or extremely inefficient
� Designer has less control

� Why AAAs still in-house

� Example: Ubisoft Anvil
� Large, open-world games
� Ability to climb anywhere
� This is all core gameplay
� Cannot just add this on

gamedesigninitiative
at cornell university

the

Traditional Way to Break Up a Game

� Game Engine
� Software, created primarily by programmers

� Rules and Mechanics
� Created by the designers, with programmer input

� User Interface
� Coordinated with programmer/artist/HCI specialist

� Content and Challenges
� Created primarily by designers

Game Components16

gamedesigninitiative
at cornell university

the

Rules & Mechanics

� Fills in the values for the system
� Parameters (e.g. gravity, damage amounts, etc.)
� Types of player abilities/verbs
� Types of world interactions
� Types of obstacles/challenges

� But does not include specific challenges
� Just the list all challenges that could exist
� Contents of the palette for level editor

Game Components17

gamedesigninitiative
at cornell university

the

Rules: Super Mario Bros.

� Enemies
� Goombas die when stomped
� Turtles become shells when stomped/bumped
� Spinys damage Mario when stomped
� Piranha Plants aim fireballs at Mario

� Environment
� Question block yields coins, a power-up, or star
� Mushroom makes Mario small
� Fire flower makes Mario big and fiery

Game Components18

gamedesigninitiative
at cornell university

the

Rules: Super Mario Bros.

� Enemies
� Goombas die when stomped
� Turtles become shells when stomped/bumped
� Spinys damage Mario when stomped
� Piranha Plants aim fireballs at Mario

� Environment
� Question block yields coins, a power-up, or star
� Mushroom makes Mario small
� Fire flower makes Mario big and fiery

Game Components19

Will be the topic of next few lectures

gamedesigninitiative
at cornell university

the

Game AI: Where Does it Go?

� Game AI is traditionally placed in mechanics
� AI needs rules to make right choices
� Tailor AI to give characters personalities

� But it is implemented by programmer
� Search algorithms/machine learning
� Shouldn’t these be in game engine?

� Holy Grail: “AI Photoshop” for designers
� Hides all of the hard algorithms

Game Components20

gamedesigninitiative
at cornell university

the

Traditional Way to Break Up a Game

� Game Engine
� Software, created primarily by programmers

� Rules and Mechanics
� Created by the designers, with programmer input

� User Interface
� Coordinated with programmer/artist/HCI specialist

� Content and Challenges
� Created primarily by designers

Game Components21

gamedesigninitiative
at cornell university

the

Interfaces

� Interface specifies
� How player does things (player-to-computer)
� How player gets feedback (computer-to-player)

� More than engine+mechanics
� Describes what the player can do
� Do not specify how it is done

� Bad interfaces can kill a game

Game Components22

gamedesigninitiative
at cornell university

the

Interface: Dragon Age

Game Components23

gamedesigninitiative
at cornell university

the

Interface: Dead Space

Game Components24

gamedesigninitiative
at cornell university

the

Designing Visual Feedback

� Designing for on-screen activity
� Details are best processed at the center
� Peripheral vision mostly detects motion
� Visual highlighting around special objects

� Designing for off-screen activity
� Keep HUD elements out of the center
� Flash the screen for quick events (e.g. being hit)
� Dim the screen of major events (e.g. low health)

Game Components25

gamedesigninitiative
at cornell university

the

Interface: Witcher 3

Game Components26

gamedesigninitiative
at cornell university

the

Other Forms of Feedback

� Sound
� Player can determine type, distance
� In some set-ups, can determine direction
� Best for conveying action “off-screen”

� Tactile (e.g. Rumble Shock)
� Good for proximity only (near vs. far)
� Either on or off; no type information
� Limit to significant events (e.g. getting hit)

Game Components27

gamedesigninitiative
at cornell university

the

Traditional Way to Break Up a Game

� Game Engine
� Software, created primarily by programmers

� Rules and Mechanics
� Created by the designers, with programmer input

� User Interface
� Coordinated with programmer/artist/HCI specialist

� Content and Challenges
� Created primarily by designers

Game Components28

gamedesigninitiative
at cornell university

the

Content and Challenges

� Content is everything else

� Gameplay content defines the actual game
� Goals and victory conditions
� Missions and quests
� Interactive story choices

� Non-gameplay content affects player experience
� Graphics and cut scenes
� Sound effects and background music
� Non-interactive story

Game Components29

gamedesigninitiative
at cornell university

the

Mechanics vs. Content

� Content is the layout of a specific level
� Where the exit is located
� The number and types of enemies

� Mechanics describe what these do
� What happens when player touches exit
� How the enemies move and hinder player

� Mechanics is the content palette

Game Components30

gamedesigninitiative
at cornell university

the

Mechanics vs. Content

Game Components31

gamedesigninitiative
at cornell university

the

Mechanics vs. Content

Game Components32

palette

gamedesigninitiative
at cornell university

the

Why the Division?

� They are not developed sequentially
� Content may requires changes to game engine
� Interface is changing until the very end

� Intended to organize your design
� Engine: decisions to be made early, hard-code
� Mechanics: mutable design decisions
� Interface: how to shape the user experience
� Content: specific gameplay and level-design

Game Components33

gamedesigninitiative
at cornell university

the

Milestones Suggestions

Nondigital Gameplay Technical Alpha Beta GM

Pre-Engine
Tech

Completed
Game Engine

Mechanics (Design) Mechanics
(Implementation)

Interface
(Functional Mock-up) Interface (Polishing)

Content

Game Components34

gamedesigninitiative
at cornell university

the

Summary

� Game is divided into four components
� Should keep each in mind during design

� Key for distributing work in your group

� But they are all interconnected
� System/engine limits your possible mechanics
� Content is limited by the type of mechanics

� Once again: design is iterative

Game Components35

