
gamedesigninitiative
at cornell university

the

Data-Focused Design

Lecture 11

gamedesigninitiative
at cornell university

the

Take-Away for Today

� What is “data-focused” design?
� How do the programmers use it?
� How to the designers/artists/musicians use it?

� What are the benefits of data-focused design?
� To both the developer and the player

� What is a level editor and how does it work?
� What can you do graphically?
� How does scripting work in a level editor?

Data-Focused Design2

gamedesigninitiative
at cornell university

the

Recall: Game Components

� Game Engine
� Software, created primarily by programmers

� Rules and Mechanics
� Created by the designers, with programmer input

� User Interface
� Coordinated with programmer/artist/HCI specialist

� Content and Challenges
� Created primarily by designers

Data-Focused Design3

gamedesigninitiative
at cornell university

the

Data-Focused Design

� No code outside engine
� Engine determines space of possibilities
� Actual possibilities are data/scripts

� Examples:
� Art and music in industry-standard file formats
� Object data in JSON or other data file formats
� User interface in JSON or other data files
� Character behavior specified through scripts

Data-Focused Design4

gamedesigninitiative
at cornell university

the

Architecture: The Big Picture

Data-Focused Design5

gamedesigninitiative
at cornell university

the

Architecture: The Big Picture

Data-Focused Design6

Player

Programmer

Designer

gamedesigninitiative
at cornell university

the

Common Development Cycle

� Start with small number of programmers

� Programmers create a content pipeline
� Productivity tools for artists and designers
� Data can be imported, viewed and playtested

� Hire to increase number of artists, designers
� Focus: creating content for the game

� Ship title and repeat (e.g. cut back on artists)

Data-Focused Design7

gamedesigninitiative
at cornell university

the

Data-Focused Design8

Content Pipeline

Game
Engine

Art Tools SoftwareInitial File
Format

Final File
Format

G3DJAUTODESK
FBX

gamedesigninitiative
at cornell university

the

Content Creation Tools

� Level Editor
� Create challenges and obstacles
� Layout the user interface
� Tune parameters (physics, difficulty, etc.)

� Scripting Tools
� Layout the user interface
� Define character behavior
� Script triggers and events

Data-Focused Design9

gamedesigninitiative
at cornell university

the

Level Editor Features

� Create Terrain
� Defines game geometry as 2D or 3D space
� Terrain can be free-form or as grid tiles

� Place Objects
� Includes NPCs, hazards, power-ups, etc.
� Again can be free-form or aligned to a grid

� Annotate Objects/Terrain
� Attach scripts to interactive objects
� Define boundaries for event triggers

Data-Focused Design10

gamedesigninitiative
at cornell university

the

Example: Blades of Avernum

Data-Focused Design11

Bahssikava
by Tom Watts

gamedesigninitiative
at cornell university

the

Example: Blades of Avernum

Data-Focused Design12

Grid

Terrain

Scripts

Tools

gamedesigninitiative
at cornell university

the

Level Editor: Code Sharing

� Option: level editor in same project
� Single IntelliJ project for both
� Pro: Easy to integrate into the game itself
� Con: Harder to separate modules/subsystems

� Option: develop core technology
� Identify source code used by each
� JAR for both level editor and game
� Pro: Cleaner separation of subsystems
� Con: Harder to iterate the design

Data-Focused Design13

gamedesigninitiative
at cornell university

the

Data-Focused Design14

Level Editor: Serialization

Level
Editor

Game
Engine

Serialize Parse

Level
File

Stores:
Game Model

gamedesigninitiative
at cornell university

the

Level Editor: Serialization

� Do not duplicate data
� Art and music are separate files
� Just reference by the file name

� Must version your file
� As game changes, format may change
� Version identifies the current file format
� Want a conversion utility between versions
� Version should be part of file header

Data-Focused Design15

Version 1.02.3

gamedesigninitiative
at cornell university

the

XML

<NPC>

 <type>Orc</type>

 <health>200</health>

 <position>

 <x>50</x>

 <y>25</y>

 </position>

</NPC>

Data-Focused Design16

Standard Serialization Formats

JSON

{

 "NPC" : {

 "type" : "Orc",

 "health" : 200,

 "position" : {

 "x" : 50,

 "y" : 25

}}}

gamedesigninitiative
at cornell university

the

XML

<NPC>

 <type>Orc</type>

 <health>200</health>

 <position>

 <x>50</x>

 <y>25</y>

 </position>

</NPC>

Data-Focused Design17

Standard Serialization Formats

JSON

{

 "NPC" : {

 "type" : "Orc",

 "health" : 200,

 "position" : {

 "x" : 50,

 "y" : 25

}}}

XmlReader
JsonReader

gamedesigninitiative
at cornell university

the

� Level container (model)
� Collection of model objects
� Interface to the controllers
� Similar to a collection type
� May have other methods

� Level parser (controller)
� Performs (de)serialization
� Collabs with all models
� Typically a factory pattern
� Can embed some in model

Data-Focused Design18

Levels and Game Architecture

Level
Container

Model Model Model

Scene

gamedesigninitiative
at cornell university

the

� Level container (model)
� Collection of model objects
� Interface to the controllers
� Similar to a collection type
� May have other methods

� Level parser (controller)
� Performs (de)serialization
� Collabs with all models
� Typically a factory pattern
� Can embed some in model

Data-Focused Design19

Levels and Game Architecture

Level
Container

Model Model Model

Parser

gamedesigninitiative
at cornell university

the

Unacceptable

class Model {

 …

 void loadFile(String name) {…}

 …

 void loadFile(File file) {…}

 …

}

Data-Focused Design20

In-Model Deserialization

Acceptable

class Model {

 …

 void loadData(JSON data) {…}

 …

 void loadData(XML data) {…}

 …

}

gamedesigninitiative
at cornell university

the

Unacceptable

class Model {

 …

 void loadFile(String name) {…}

 …

 void loadFile(File file) {…}

 …

}

Data-Focused Design21

In-Model Deserialization

Acceptable

class Model {

 …

 void loadData(JSON data) {…}

 …

 void loadData(XML data) {…}

 …

}

I/O handled
in model

I/O handled
previously

I/O Code is brittle and platform-specific

gamedesigninitiative
at cornell university

the

Example: Programming Lab 4

Data-Focused Design22

gamedesigninitiative
at cornell university

the

I/O is Brittle and Platform Specific

� Not all platforms specify files in the same way
� Windows uses \ for directories, not /
� Only Windows maps drives to letters
� macOS is not case sensitive but .jar files are

� Not all platforms allow you to read/write files
� macOS restricts access to Desktop/Documents
� Application must get permission first

� Some platforms have no file system at all!
� iOS and Android only have application data
� But no concept of folders or directories

Data-Focused Design23

gamedesigninitiative
at cornell university

the

LibGDX Has Three File Types

� Internal: Read-Only
� Location where the assets are stored
� Could be inside of a .jar file!

� Local: Read-Write
� Folder where application/.jar is located
� Often do not have write permission

� External: Read-Write
� Often the user’s home directory
� Usually have write permission

Data-Focused Design24

gamedesigninitiative
at cornell university

the

LibGDX Has Three File Types

� Internal: Read-Only
� Location where the assets are stored
� Could be inside of a .jar file!

� Local: Read-Write
� Folder where application/.jar is located
� Often do not have write permission

� External: Read-Write
� Often the user’s home directory
� Usually have write permission

Data-Focused Design25

Assets

Do Not Use

Saved Games

gamedesigninitiative
at cornell university

the

LibGDX Has Three File Types

� Internal: Read-Only
� Location where the assets are stored
� Could be inside of a .jar file!

� Local: Read-Write
� Folder where application/.jar is located
� Often do not have write permission

� External: Read-Write
� Often the user’s home directory
� Usually have write permission

Data-Focused Design26

Use GDIAC class
SandboxFileHandler
for yor save directory

gamedesigninitiative
at cornell university

the

Levels and Error Detection

� Game data is not compiled into software
� Files go into a well-define folder
� Game loads everything in folder at start-up
� Adding new files to folder adds levels

� But this requires robustness
� What if the levels are missing?
� What if the levels are corrupted?
� What if you are using wrong file version?

Data-Focused Design27

gamedesigninitiative
at cornell university

the

Levels and Error Detection

� Corruption a major problem in this design
� Player might trash a level file (or directory)
� Modder might alter level improperly
� Content patch might have failed

� Process all errors gracefully
� Check everything at load time
� If level corrupt, allow play in others
� Give helpful error messages

Data-Focused Design28

gamedesigninitiative
at cornell university

the

Content Creation Tools

� Level Editor
� Create challenges and obstacles
� Layout the user interface
� Tune parameters (physics, difficulty, etc.)

� Scripting Tools
� Layout the user interface
� Define character behavior
� Script triggers and events

Data-Focused Design29

gamedesigninitiative
at cornell university

the

Scene Root

Data-Focused Design30

UI Design: Scene Graphs

Node

Node

NodeNode

Node
Node

Node

Scene

Node

Node Node

Node

Node Node
Origin

Origin

gamedesigninitiative
at cornell university

the

Scene Root � Node is a coordinate system
� Logically a “window”
� Children move with parent

� Hierarchically build widgets

Data-Focused Design31

UI Design: Scene Graphs

Node

Node

NodeNode

Node
Node

Origin

Origin

Node

Node

Node

gamedesigninitiative
at cornell university

the

Scene Root � Node is a coordinate system
� Logically a “window”
� Children move with parent

� Hierarchically build widgets

Data-Focused Design32

UI Design: Scene Graphs

Node

Node

NodeNode

Node
Node

Origin

Origin

Node

Node

Node

LibGDX Support: com.badlogic.gdx.scenes

gamedesigninitiative
at cornell university

the

CUGL: JSON for Scene Graphs
"textfield" : {
 "type" : "Node",
 "format" : { "type" : "Anchored" },
 "children" : {
 "action" : {
 "type" : "TextField",
 "data" : {
 "font" : "felt",
 "text" : "Edit me",
 "size" : [600,80],
 "anchor" : [0.5,0.5]
 },
 "layout" : {
 "x_anchor" : "center",
 "y_anchor" : "top"
 } Data-Focused Design33

Node
name

Node
type

Layout
manager

Child
nodes

gamedesigninitiative
at cornell university

the

CUGL: JSON for Scene Graphs
"textfield" : {
 "type" : "Node",
 "format" : { "type" : "Anchored" },
 "children" : {
 "action" : {
 "type" : "TextField",
 "data" : {
 "font" : "felt",
 "text" : "Edit me",
 "size" : [600,80],
 "anchor" : [0.5,0.5]
 },
 "layout" : {
 "x_anchor" : "center",
 "y_anchor" : "top"
 } Data-Focused Design34

Layout
manager

Node
data

Info for
parent layout

gamedesigninitiative
at cornell university

the

Scripting Languages

Data-Focused Design35

gamedesigninitiative
at cornell university

the

Why Scripting?

� Character AI
� Software only aware of high level actions
� Specific version of each action is in a script

� Triggers
� Actions happen in response to certain events
� Think of as an if-then statement
� if: check if trigger should fire
� then: what to do if trigger fires

Data-Focused Design36

gamedesigninitiative
at cornell university

the

Triggers and Spatial Boundaries

Data-Focused Design37

Launch cut scene
if Mario reaches

this box alive

gamedesigninitiative
at cornell university

the

Ways of Scripting

� Static functions/constants exposed in editor
� Script is just the name of function to call
� Used in the sample level editor
� Typically good enough for this course

� Use standard scripting language
� Examples: Lua, stackless python
� A lot of overhead for this class
� Only if writing high performance in C/C++

Data-Focused Design38

gamedesigninitiative
at cornell university

the

Scripting in Dawn of War 2

Data-Focused Design39

gamedesigninitiative
at cornell university

the

Simpler: XML Specification

Data-Focused Design40

gamedesigninitiative
at cornell university

the

Data-Focused Design41

JSON/XML as a “Scripting Language”

"myevent" : {
 "id" : 4,
 "sparkle" : {
 "color" : "blue",
 "size" : 2,
 "duration" : 3,
 },
 "buff" : {
 "attrib" : "health",
 "value" : 4,
 },
 "sound" : "magic4"
}

codefrag = "
switch (triggerId) {
 …
 case 4:
 sparkleCharacter(BLUE,2,3);
 buffCharacter(HEALTH,4);
 playSound(MAGIC4);
 break;
 …
}"

This is text, not
compiled code

gamedesigninitiative
at cornell university

the

Data-Focused Design42

JSON/XML as a “Scripting Language”

codefrag = "
switch (triggerId) {
 …
 case 4:
 sparkleCharacter(BLUE,2,3);
 buffCharacter(HEALTH,4);
 playSound(MAGIC4);
 break;
 …
}"

class MyEvent implements Event {

 void process(int triggerId) {

 switch (triggerId) {
 …
 case 4:
 sparkleCharacter(BLUE,2,3);
 buffCharacter(HEALTH,4);
 playSound(MAGIC4);
 break;
}}

Java Support: javax.tools.JavaCompiler

gamedesigninitiative
at cornell university

the

Final Words: The Tiled Level Editor

Data-Focused Design43

gamedesigninitiative
at cornell university

the

Advantanges

� Supports almost any game
� Only places terrain/objects
� You interpret placement
� Allows custom properties

� Supports custom collisions
� Each object has a “hit box”
� Not just rectangular shapes

� Supports XML and JSON

Data-Focused Design44

Using Tiled for 3152

Disadvantages

� No polygonal terrain
� Terrain must fit to the grid
� NOT how Lab 4 works

� No (real) AI scripting
� At best have “JSON scripts”
� Also can define patrol paths

� No built-in parser
� To convert JSON to classes

gamedesigninitiative
at cornell university

the

No Built-in Parser?

Data-Focused Design45

gamedesigninitiative
at cornell university

the

No Built-in Parser?

Data-Focused Design46

Forbidde
n!

gamedesigninitiative
at cornell university

the

The Problem with External Editors

� Editors often come with runtimes
� Premade classes for the editor objects
� Parser converts JSON/XML into these classes

� This shackles your architecture design
� You must design your classes around these
� They often violate MVC in hideous ways

� Reject tools that screw up your architecture!
� Good tools should be decoupled (e.g. box2d)

Data-Focused Design47

gamedesigninitiative
at cornell university

the

Summary

� Data-focused design has several advantages
� Faster content production; code reuse is easier
� Embrace of modder community can add value

� Two major focuses in data-focused design
� Level editors place content and challenges
� Scripts specify code-like behavior outside of code

� Be careful with 3rd party editors
� Can streamline your development process
� But it can also screw up your architecture

Data-Focused Design48

