the

gamedesigninitiative
at cornell university
I
Lecture 10

Architecture Design

Take Away for Today

® What should the lead programmer do?

® How do CRC cards aid software design?

® What goes on each card?
® How do you lay them out?
® What properties should they have?

® How do activity diagrams aid design?
® How do they relate to CRC cards?

® Difference between design & documentation

the . e ee e
2 Architecture Design gamedesigninitiative

11111111111111111111

Role of Lead Programmer

® Make high-level architecture decisions
® How are you splitting up the classes?
® What 1s your computation model?
® What is stored 1n the data files?

® What third party libraries are you using?

® Divide the work among the programmers

® Who works on what parts of the game?
® What do they need to coordinate?

[EE— EE——

the . e ee e
3 Architecture Design gamedeﬂa%giﬂﬂﬁﬁf

Architecture: The Big Picture

Designer

Programmer

or Modder

Player
Game Engine Input Devices GUI :
| ;
Physics Engine F : Rendering Audio ||
].DISCI‘GFC Engine Engine | |
Al Engi Simulation !
nsine - o Engine '
(e.g Pathfinding) |
- - N :
Compiler Data Management Layer :
....................... I Sl I S P
Game Content Character Character Ul Models Sounds :
Scripts Data Elements and Textures !
Architecture Design gamede51gn1n1t1atlve

at cornell university

ldentify Modules (Systems)

® Modules: logical unit of functionality
® (Often reusable over multiple games
® Implementation details are hidden

® API describes interaction with rest of system

® Natural way to break down work
® Each programmer decides implementation
® But entire team must agree on the API

® Specification first, then programming

[EE— EE——

the . e ee e
5 Architecture Design gamedeﬂa%giﬂﬂﬁﬁf

Architecture: The Big Picture

Designer

Programmer

or Modder

Player
Game Engine : System :
t Devices or I :
. . Module - io ||
Physics Engm I Y. Rende.rlng Auc!m !
AT Engine Engine | |
Al Engi Simulation !
nsine - o Engine '
(e.g Pathfinding) |
- - N :
Compiler Data Management Layer :
....................... I Sl I S P
Game Content Character Character Ul Models Sounds :
Scripts Data Elements and Textures !
Architecture Design gamede51gn1n1t1atlve

at cornell university

Example: Physics Engines

® API to manipulate objects
® Put physics objects in “container”
® Specify their connections (e.g. joints)

® Specify forces, velocity

® Everything else hidden from user

® Collisions detected by module

® Movement corrected by module

[EE— EE——

the . e ee e
7 Architecture Design gamedeﬂﬁiﬂﬂﬁﬁf

Relationship Graph

® Shows when one module “depends” on another
® Module A calls a method/function of Module B
® Module A creates/loads instance of Module B

® General Rule: Does 4 need the API of B?

® How would we know this?

Module 1

Module 2

A\ /

Module 3

Y
Module 1 does not “need’ to know about Module 3

the . e e .
8 Architecture Design gamed851§£}3§;}tﬁt‘r§§

Relationship Graph

® Edges in relationship graph are often directed
® [f A calls a method of B, 1s B aware of 1t?

® But often undirected 1n architecture diagrams

® Direction clear from other clues (e.g. layering)

® Developers of both modules should still agree on API

Module 2 Module 3

Does Module 1 need to know about Module 2?

the . e e .
9 Architecture Design gam‘fde“a%f:}fe‘l}tﬁtﬁﬁ

Dividing up Responsibilities

® Each programmer has a module
® Programmer owns the module Module 1 Owner:
® Final word on implementation Bob
® Owners collaborate w/ neighbors
® Agree on API at graph edges Module 2 gwner:
nne
® (all meetings “Interface Parties™
® Works, but...

must agree on modules and Module 3 Owner:
responsibilities ahead of time Doug

the e
10 Architecture Design gamedesigninitiative

at cornell university

Nested (Sub)modules

® (Can do this recursively
. . Module 1
® Module is a piece of software S

® (Can break into more modules

® Nested APIs are internal
® Only needed by module owner

® Parent APIs may be different!

Module 2

® C(ritical for very large groups

® Each small team gets a modules

® Inside the team, break up further

® Even deeper hierarchies possible

cornell university

the e
11 Architecture Design gamede51§nm1t1at1ye

Architecture: The Big Picture

Nested 1
Module

1 \ 1
lGame Engine Input Devices GUI V—} E

1 . 1

5 ' . . 1 1 1

| e JEmeine F . Rendering Audio |

§ ! Y ° Discrete Engine Engine | |:

S Al Enoi Simulation !
3! nsme o Engine '

& .|(e.g Pathfinding) !

' | | | :

! Compiler Data Management Layer :

g poSooToorn i it I e I —
2 2 +Game Content :
8E Character Character Ul Models Sounds |
5= | Scripts Data Elements and Textures '
U S S S) S— !
12 Architecture Design gamede51gn1n1t1atlve

at cornell university

How Do We Get Started?

® Remember the design caveat:
® Must agree on module responsibilities first

® Otherwise, code 1s duplicated or even missing

® Requires a high-level architecture plan
® Enumeration of all the modules
® What their responsibilities are

® Their relationships with each other

® Responsibility of the lead architect

[EE— EE——

the . e ee e
13 Architecture Design gamedeﬂa%giﬂﬂﬁﬁf

Design: CRC Cards

® (Class-Responsibility-Collaboration
® (Class: Important class in subsystem

® Responsibility: What that class does

® Collaboration: Other classes required

® May be part of another subsystem

® English description of your API
® Responsibilities become methods

® (Collaboration 1dentifies dependencies

[EE— EE——

the . e ege 4.
14 Architecture Design gamedesigninitiative

CRC Card Examples

Responsibility Collaboration
Pathfinding: Avoiding obstacles Game Object, Scene Model

Strategic Al: Planning future moves Player Model, Action Model
Character AI: Driving NPC personality Game Object, Level Editor Script

Scene Model

Responsibility Collaboration
Enumerates game objects in scene Game Object
Adds/removes game objects to scene Game Object
Selects object at mouse location Mouse Event, Game Object

the . e ee e
15 Architecture Design gamed%ﬂ%ﬂiﬂﬂﬁﬂf

CRC Card Examples

Class

Controller Al Controller Name -

Responsibility Collaboration
Pathfinding: Avoiding obstacles Game Object, Scene Model

Strategic Al: Planning future moves Player Model, Action Model
Character AI: Driving NPC personality Game Object, Level Editor Script

Model Scene Model

Responsibility Collaboration
Enumerates game objects in scene Game Object
Adds/removes game objects to scene Game Object
Selects object at mouse location Mouse Event, Game Object

the . e ee e
16 Architecture Design gamed%ﬂ%ﬂiﬂﬂﬁﬂf

Creating Your Cards

® Start with MV C Pattern

® (ives 3 basic subsystems
’

® List responsibilities of each Responsibility Collaboration

® May be all that you need
(TemperatureConverter)

® Split up a module if
® Too much for one person

® API for module too long

® Don’t need to nest (yet)

® Perils of ravioli code

the . e ee e
17 Architecture Design gamedeﬂa%giﬂﬂﬂﬂf

Creating Your Cards

® Start with MV C Pattern

: : Module 1
o lees 3 baSIC Subsystems _

Responsibility Collaboration

® List responsibilities of each

® May be all that you need

(TemperatureConverter)

® Splitup a module it

® Too much for one person Responsibility Collaboration

® API for module too long

® Don’t need to nest (yet)

® Perils of ravioli code

the . e ee e
18 Architecture Design 8amede$§{;§;}$i?§§

Application Structure

Root
Controller
[Ownership
Subcontroller ‘ Subcontroller \

Collaboration]

19 Architecture Design

the . e ey g
gamedesigninitiative

at cornell university

Application Structure

Root ® (Collaboration
Controller

. ® Must import class/interface
Ownership

® [nstantiates an object OR
® (alls the objects methods

Subcontroller ¢ Ownershlp

® [nstantiated the object

® Subset of collaboration

Collaboration]

he o
20 Architecture Design tgamede51g1rurut1at1\'/e

at cornell university

Following the Information Flow

Root
Controller
Pushes data
via parameters

Subcontroller Subcontroller

the . o e g
gamedesigninitiative

at cornell university

Following the Information Flow

Root
Controller

Subcontroller

Pushes data

via parameters

‘ Subcontroller \

Pulls data
via return

the . e ey g
gamedesigninitiative

at cornell university

Following the Information Flow

Root
Controller

Pushes data

. CteTS

Information flow is
how we evaluate

your architecture spec Pulls data
via return

the . o e g
gamedesigninitiative

at cornell university

Who Is Responsible for Drawing?

24

Root
Controller

SpriteBatch

‘ Subcontroller \ ‘ Subcontroller \

at cornell university

the e
Architecture Design gamedesigninitiative

Who Is Responsible for Drawing?

25

Root
Controller
‘ Subcontroller \ ‘ Subcontroller \

SpriteBatch

the . e el .
Architecture Design gamedesigninitiative

at cornell university

Avoid Cyclic Collaboration

26

Controller

collaborates

collaborates
with

cornell university

the e
Architecture Design gamede51§nm1t1at1ye

Avoid Cyclic Collaboration

¢ Example: Lab 3

® Ship fires projectiles
® Must add to game state

® Originally all in model
® Ship referenced game state

® And game state stored ship

® (yclic Reference

® We added a new controller

® [t references game state

® Only 1t adds to game state
® (Cycle broken

27 Architecture Design

| Game State |
Ship

A

the . o e g
gamedesigninitiative
at cornell university

Avoid Cyclic Collaboration

¢ Example: Lab 3
® Ship fires projectiles GameplayController

® Must add to game state

® Originally all in model

® Ship referenced game state
® And game state stored ship Game State
® Cyclic Reference

® We added a new controller

® [t references game state

® Only 1t adds to game state
® (Cycle broken

he
28 Architecture Design tgamedeagrumhatwe

at cornell university

Alternative: Interfaces

® Relationships are for APIs
® [mplementation not relevant GDXRoot

® (an be class or interface

® Interfaces can break cycles
® Start with single class E@

® Break into many interfaces

® Refer to interface, not class

® Helpful for scene changes Scenelistener
® NOTHING collabs with root

® Need another way to report

he
29 Architecture Design tgamede51grurut1at1_/e

at cornell university

Alternative: Interfaces

® Relationships are for APIs
® [mplementation not relevant GDXRoot

® (an be class or interface

® Interfaces can break cycles Counterintutive
u Utiv
® Start with single class ' JmeScene

—

® Break into many interfaces

® Refer to interface, not class

® Helpful for scene changes Scenelistener
® NOTHING collabs with root

® Need another way to report

he
30 Architecture Design tgamede51grurut1at1_/e

at cornell university

Architecture: The Big Picture

Player
/,J Devices . GUI :
| | ;
. Rendering Audio |
DISCI‘GFC Engine Engine | |
" Engi Simulation - !
S nsme o Engine '
& .|(e.g Pathfinding) !
' | | | :
! Compiler Data Management Layer :
g poSooToorn i it I e I -
2 = 'Game Content :
8E Character Character Ul Models Sounds |
5= | Scripts Data Elements and Textures '
A S———) S S SN) S
31 Architecture Design tggf'clmedesigninitiative

at cornell university

CRC Index Card Exercise

-
Try to make

collaborators
adjacent

.

Responsibility Collaboration

Class 2

Responsibility

Collaboration

Class 3

.
.
.
.
.

Responsibility

Collaboration

Class 2
Class 3
Class 4

If cannot do this, time

to think about nesting!

32

.
.
.
.
.

Class 4

Responsibility

Collaboration

Designing Class APIs

® Make classes formal
® Turn responsibilities into methods

® Turn collaboration into parameters

Scene Model

Responsibility Method

Enumerates game Objects Iterator<GameObject> enumObjects ()

Adds game objects to scene ~ void addObject (gameObject)

Removes objects from scene void removeObject (gameObject)

Selects object at mouse GameObject getObject (mouseEvent)

the . e ee e
33 Architecture Design gamedeﬂa%giﬂﬂﬂﬂf

Documenting APls

® Use a formal documentation style

° W
° W

nat parameters the method takes

hat values the method returns

° W

nat the method does (side effects)

® How method responds to errors (exceptions)

® Make use of documentation comments

34

® Example: JavaDoc in Java

® Has become defacto-standard (even used in C++)

the . e ege 4.
Architecture Design gamedesigninitiative

at cornell university

- =

Documenting API

/**
* Returns an Image object that can then be painted on the screen.
* <p>
* The url argument must specify an absolute {@link URL}. The name argument is a specifier that
* is relative to the url argument.
* <p>
* This method always returns immediately, whether or not the image exists. When this applet
* attempts to draw the image on the screen, the data will be loaded. The graphics primitives that
* draw the image will incrementally paint on the screen.

*

* @param url an absolute URL giving the base location of the image
* @param name the location of image, relative to the url argument
* @return the image at the specified URL
* @see Image
*/
public Image getImage(URL url, String name) {

try {

return getImage(new URL(url, name));
} catch (MalformedURLException e) { return null; } }

the . « ege g
35 Architecture Design gamedesigninitiative

http://www.oracle.com/technetwork/java/javase/documentation/index-137868.html
http://www.oracle.com/technetwork/java/javase/documentation/index-137868.html
http://www.oracle.com/technetwork/java/javase/documentation/index-137868.html
http://www.oracle.com/technetwork/java/javase/documentation/index-137868.html
http://www.oracle.com/technetwork/java/javase/documentation/index-137868.html

Taking This Idea Further

® UML: Unified Modeling Language

o MODELING
® How usetul 1s 1t? LANGUAGE .

36

® Often used to specify class relationships

® But expanded to model other things
® Examples: data flow, human users - o

® Extremely useful for documentation
® [ess useful for design (e.g. before implementation)

® A language to program in another language

[EE— EE——

the . e ee e
Architecture Design gamedeﬂa%giﬂﬂﬁﬁf

Activity Diagrams

® Define the workflow of your program
® Very similar to a standard flowchart

® Can follow simultaneous paths (threads)

® Are a component of UML UNIFIED o
® But did not originate with UML rA(:lDGEULII\T;GE p
® Mostly derived from Petri Nets
® One of most useful UML design tools

® Activity diagrams are only UML we use

[EE— EE——

the . e ee e
37 Architecture Design gamedeﬂa‘%ﬂiﬂﬂﬁﬁf

Activity Diagram Example

‘_) Find [no coffee] [no cola]
Beverage

[found coffee] (found cola]
| | |
L4 \ 4

Put Coffee Add Water Get Get Can

in Filter to Reservoir Cups of Cola
Put Filter
in Machine

y v

v

Turn On Brew
Machine Coffee

—

I [coffee dispensed]
Pour s é s Drink
Coffee Beverage

[EE— EE——

the . o ege g
38 Architecture Design gamedesigninitiative

at cornell university
T

Activity Diagram Example

Find [no coffee] Decision [no cola]
‘_) Beverage Guard
Start [found coffee] (found cola]
| | I
Y 4
Put Coffee Add Water Get Get Can Activit
in Filter to Reservoir Cups of Cola y
Put Filter
in Machine
J, Synch |
i, Bar
e o
achine offee .l
| Condition
I [coffee dispensed]
Pour s é s Drink
Coffee Beverage

39 Architecture Design

End

the . o ege g
gamedesigninitiative
at cornell university

- ===

Activity Diagram Components

® Synchronization Bars l l l
® In: Wait until have happened l l l
® (Qut: Actions “simultaneous”
Potential Threads
® . or order does not matter

® Decisions é_)

® [In: Only needs one input

\4

Lo

® QOut: Only needs one output
< If-Then Logic >
® Guards
® When we can follow edge [if yes] l *[for each] |

® * ig iteration over container

40 Architecture Design

the . o ege g
gamedesigninitiative
at cornell university

Asynchronous Pathfinding

Qo

l

Draw

¥

Reset
Pathfinder

Find
Path

Get '

Input
‘L |
l*[for each selected] l
*[for.each Determine |

oneet Goal
Y
ideé}surle é [new goal]
o Goa .
/
|
é{ [path found]
*
[all objects W v
checked] |

*[for each object] l
|
Move :
Object |
|
|
|

41

Architecture Design

[EE— EE——

the . o ege g
gamedesigninitiative
at cornell university

- ===

Asynchronous Pathfinding

Get
Input < '

L Iteration I ‘—) Reset
[Pathfinder
*[for each selected]
%
[for.each Determine :
object] Goal v
\4
Measure é [new goal]
to Goal > * Buffer 7

Find

é{ [path found] Path

Task Separator

%
[all objects W \ 2
checked]
*[for each object] v
|
Move I
Object :
| |
I
Draw l

[EE— EE——

the . o ege g
42 Architecture Design gamedesigninitiative

at cornell university
T

Asynchronous Pathfinding

Get
Input < ‘

Iteration

*[for each selected]

Reset 2
. Pathfinder

*[fog.eac]h Determine N
object
v Goal Synchronization + Guard
Measure [new go Think of as multiple outgoing
edges (with guard) from bar
é{ [path fou J
[all objects \L l
checked] l* .
[for each object] v
|
Move [
Object :
| .
[
Draw I Task Separator
43 Architecture Design gamede51gn1n1t1atlve

at cornell university

Expanding Level of Detall

to Goal
e r—————

[all objects v
checked]
l*[for each ob
Move
Object
Draw
44

Reset ¢
. ~ Pathfinder

Get ‘
Input
|
l*[fOr each selected] l
ES
[for.each Determine |
oneet Goal I
\ 4
Measure

Draw
Background
Draw
Objects

Architecture Design

Y

\ 4
Find
Path

i

w0000
the . « ege g

gamedesigninitiative

at cornell university
e

Using Activity Diagrams

® Good way to 1dentify major subsystems

® Do activity diagram first?

45

® Each action 1s a responsibility
® Need extra responsibility; create 1t in CRC

® Responsibility not there; remove from CRC

® Another iterative process

® Keep level of detail simple

® Want outline, not software program

the . e el .
Architecture Design gamedeSIa%fEﬁtfv’%?

- =

Architecture Design

® Identify major subsystems in CRC cards

® List responsibilities
® List collaborating subsystems

® Draw activity diagram

® Make sure agrees with CRC cards
® Revise CRC cards if not

® Create class API from CRC cards

46

® Recall intro CS courses: specifications first!
® But not actually part of specification document

[EE— EE——

the . e ege e
Architecture Design gamedesigninitiative

11111111111111111111

Programming Contract

® Once create API, 1t 1s a contract
® Promise to team that “works this way”

® (Can change implementation, but not interface

® If change the interface, must refactor
® Restructure architecture to support interface
® May change the CRCs and activity diagram

® Need to change any written code

[EE— EE——

the . e ege 4.
47 Architecture Design gamedeagmr‘uhat‘we

11111111111111111111

Summary

® Architecture design starts at a high level
® (Class-responsibilities-collaboration
® Layout as cards to visualize dependencies

® Activity diagrams useful for update loop

® Outline general flow of activity
® [dentifies dependencies 1n the process

® Must formalize class APIs

® No different from standard Java documentation
® (reates a contract for team members

48 Architecture Design gamedeagmr‘uhat‘we

11111111111111111111

Where to From Here?

® Later lectures fill in architecture details
® Data-Driven Design: Data Management
® Memory: RAM, Texture Memory
® 2D Graphics: Drawing
® Physics Engines: Collisions, Forces
® Character Al: Sense-Think-Act cycle
® Strategic Al: Asynchronous Al

® But there 1s more design coming too

[EE— EE——

the . o ege g
49 Architecture Design gamedesigninitiative

