the

gamedesigninitiative
at cornell university
Lecture 18

box2d Physics

Physics in Games

® Moving objects about the screen

® Kinematics: Motion ignoring external forces
(Only consider position, velocity, acceleration)

® Dynamics: The effect of forces on the screen

® Collisions between objects

® Collision Detection: Did a collision occur?

® Collision Resolution: What do we do?

e —

2 box2d gamedesigninitiative

lllllllllllllllll

Physics in Games

® Moving objects about the screen

® Kinematics: Motinn innari~~ - ' - forces
(¢ Class Body /ation)
® Dyrn.rmes.1TIE €TTECt of forces on the screen

® Collisions between objects

® Collicinn === ar?

' ure
® C Class FlXt S T AV

e —

3 box2d gamedesigninitiative

lllllllllllllllll

Body In box2d

® Represents a single point
® (Center of the object’s mass
® (QObject must move as unit

® Properties in class Body
® Position
® [inear Velocity
® Angular Velocity
® Body Type

® There are 3 body types
® Static: Does not move
® Kinematic: Moves w/o force
® Dynamic: Obeys forces

4 box2d tggeameclesiglninitir;vciye

llllllllllllllll y

Body In box2d

® Represents a single point
® (Center of the object’s mass
® (QObject must move as unit

® Properties in class Body
® Position
® Linear \Velocity
® Angular Velocity
® Body Type

® There are 3 body types
® Static: Does not move

e Kinematic: Moves w/o force

® Dynamic: Obeys forces

box2d

Linear
Veloci
Angular v
Velocity
Position

the . e e e
gamedesigninitiative
at cornell university

Body In box2d

® Represents a single point ¢ Kinematic is rarely useful
® Center of the object’s mass e Limited collision detection
® Object must move as unit e Only collides w/ dynamics

® Properties in class Body ® Does not bounce or react
® Position

® Application: Bullets
® [ight, fast-moving objects
® Should not bounce

® [inear Velocity
® Angular Velocity
® Body Type

® There are 3 body types
e Static: Does not move 2 L ooks like }

e Kinematic: Moves w/o force last lecture
® Dynamic: Obeys forces

6 box2d gamedesigninitiative

llllllllllllllll y

Forces vs.

Impulses

Forces

Impulses

® |nstantaneous push
® To be applied over time
® Gradually accelerates
® Momentum if sustained

Impulse = Force x Time

800
600
400

200+

Push with duration

® To be applied in one frame
® Quickly accelerates

® Immediate momentum

F (N) /Point of maximum

compression

Impulse]

Contact Contact

4 begins. ends.

0

.......... 1 (ms)

0 20 | 40 60 80 100

box2d

Duration Ar
N W Uty s Pearson Addkeon Wesley [BE—
the . P .
gamede51gn1n1t1atlve
at corne 11 university

Forces vs.

Impulses

Forces

Impulses

® |nstantaneous push
® To be applied over time
® Gradually accelerates
® Momentum if sustained

Impulse = Force x 1 Sec

In Box2D

800
600
400

200+

Push with duration

® To be applied in one frame
® Quickly accelerates

® Immediate momentum

F (N) /Point of maximum

compression

Impulse]

Contact Contact

4 begins. ends.

0

.......... 1 (ms)

0 20 | 40 60 80 100

box2d

Duration Ar
N W Uty s Pearson Addkeon Wesley [BE—
the . P .
gamede51gn1n1t1atlve
at corne 11 university

Force and Acceleration

® \What do we need to compute motion?
® Ap = VAL = VoAt + Yoa(At)? = VoAt + Y2(F/m)(At)?
® So depends on Force, current velocity and mass

® \Where does that mass come from?
® Class Body has a getter, but no setter!
® |t comes from the Fixture class °
® Fixture gives volume to body

® Wil revisit this later with collisions

e —

the . e e e
amedesigninitiative
9 b0X2d g §c0rnell university

Force and Acceleration

® \What do we need to compute motion?
® Ap = VAL = VoAt + Yoa(At)? = VoAt + Y2(F/m)(At)?
® So depends on Force, current velocity and mass

® \Where does that mass come from?
® Class Body has a getter, but no setter!

® |t comes from the Fixture class
® Fixture gives volume to body

® Wil revisit this later with collisions

(R —

10 box2d tg%?arnedesigminitiz'ati\‘fe

lllllllllllllllllll

Four Ways to Move a Dynamic Body

® [orces
® applyForce (linear)

® applyTorque

(angular) Torque Force

® Impulses
® applyLinearImpulse

® applyAngularImpuls
e

® \elocity
® setlLinearVelocity
® setAngularVelocity

® Translation

. PE—
setTransform box2d tgiearnedesigmirlitiative

at cornell university

Four Ways to Move a Dynamic Body

~~
® Forces _ ® Great for joints, complex shapes
® applyForce (linear) ~{e Laggy response to user input
® applyTorque ® Abit hard to control
(angular) =

® Great for joints, complex shapes
>t® (Good response to user input
® Extremely hard to control

® Impulses
® applylLinearImpulse

° applyAngularImpulgi

S ® Bad for joints, complex shapes
>t e Excellent response to user input
® \fry easy to control

® \elocity

® setlLinearVelocity —~

CT™N
¢ setAngularVelocity e Completely ignores physics!
® \fry easy to control

® Translation _

® setTransform

JE— e —
the . P .
amedesigninitiative
b0X2d g § ccccc 11 university

Example: box2d Demo

13

Shape: Box Controls: Force

Density: Friction: 0.1 Restitution: O

box2d

the . o ey g
gamedesigninitiative
at i

cornell university

Example: box2d Demo

Shape: Box Controls: Force

Controls:
® WASD for linear force
® |eft-right arrows to rotate

® 9 or 0 to change controls

Friction: 0.1 Restitution: O

14 box2d g‘amedesia%ninitiatiye

cornell university

Four Ways to Move a Dynamic Body

® Forces)
® applyForce (linear)

® applyTorque
(angular) > Must Cap Velocity

® Impulses
® applyLinearImpulse

® applyAngularImpuls—~
e

® \elocity

® setlLinearVelocity

® setAngularVelocity

® Translation

’ P
setTransform box2d Bomedesigninitiative

Basic Structure of a Update Loop

public void update(float dt) {
// Apply movement to relevant bodies
1f (body above or equal to max velocity) {

. body.setlLinearVelocity (maximum
velocity);

} else {
body.applyForce (force)
body.applyTorque (torque)
}

// Use physics engine to update positions

world.step (dt,vel 1terations,pos iterations);

}

16 box2d tgh?nnedesigminiti;atiye

aaaaaaa 11 university

Basic Structure of a Update Loop

public void update(float dt) {
// Apply movement to relevant bodies
1f (body above or equal to max velocity) {

. body.setlLinearVelocity (maximum
velocity);

} else {
body.applyForce (force)
body.applyTorque (torque)
}

// Use physics engine to update positions

world.step (dt, vel_ite Multlple times to Llons) ;
} Improve accuracy e

th

17 box2d g%medesigninitiatiye

aaaaaaa 11 university

Basic Structure of a Update Loop

public void update(float dt) {
// Apply movement to relevant bodies
1f (body above or equal to max velocity) {

. body.setlLinearVelocity (maximum
velocity);

l else { Only before 1

Irst i ion!
body.applyForce (force) first iteration!

body.applyTorque (torque)
}

// Use physics engine to update positions

world.step (dt, vel_ite Multlple times to Llons) ;
} Improve accuracy e

th

18 box2d gamedesigninitiative

aaaaaaa 11 university

Collision Objects in box2d

Shape

Fixture

® Stores the object geometry
® Boxes, circles or polygons
® Must be convex!

® Has own coordinate space
® Associated body is origin
® Unaffected if body moved
® Cannot be resized later

® Also stores object density
® Mass Is area x density

19

box2d

® Attaches a shape to a body
® Fixture has only one body
® Bodies have many fixtures

® Cannot change the shape
® Must destroy old fixture
® Must make a new fixture

® Has other properties
® Friction: stickiness
® Restitution: bounciness

lllllllllllllllll

Making a box2d Physics Object

// Create a body
definition

// (this can be reused)
bodydef = new BodyDef () ;
bodydef.type = type;

bodydef.position.set (posi
tion) ;

bodydef.angle = angle;

// Allocate the body

bodyl =
wor d.createBody (bodydef)

14

// Another?

bodydef.position.set (posi

EOIOHZ) ’ box2d

e ' P B o Y Y 2 Py Iy I e ¥

the . P .
gamedeSIgnmltlatlve
at cornel 11 university

Making a box2d Physics Object

// Create a body
definition

// (this can be reused))

bodydef = new BodyDef () ;
bodydef.type = type; > Normal Allocation
bodydef.position.set (posi
tion) ;
_

bodydef.angle = angle;

// Allocate the body

bod
w8r¥d createBody (bodyderf) > Optimized Allocation

// Another? /

bodydef position.set (posi

5 LONZ) box2d tgh?nnedesigminitia’cive
0X at corne 11 university

e ' P B o Y Y 2 Py Iy I e ¥

Making a box2d Physics Object

// Cﬁeate two triangles
as shapes

Ehﬁ§gon8hggg () .7
EhiggonShggg (),

Shapst: SSE(VErEel):

i Srseig,e fixture

F1¥25FeDe 7Y,

fixdef.density = density;

h th h
éé %ggéc the two shapes
fixdef.shape = shapel;

Ture 1 "
box2d game emgnm& iative

fixdef.shape = sha

letu{%%xde§?dyl createF1i

Making a box2d Physics Object

// Cﬁeate two triangles
as shapes

Other shapes possible BBPSInsnasY ()
EhiggonShggg ()7

Shapst: SSE(VErEel):

.
LA 4

Also set friction and
restitution parameters

a fixture

] flxdef.density = density;
Reason for separating

Fixture & Body Class@s // ptfach the two shapes
fixdef.shape = shapel;

Tture P .
23 box2d game e51gzrrunl} iative

fixdef.shape = sha

letu{%%xde§?dyl createF1i

Making a box2d Physics Object

// Create a body // Cﬁeate two triangles
definition as shapes
// (this can be reused) %hfggonShggg 0 .
bodydef = new BodyDef () ; h

o Y E ngonShggg ()

bodydef.type = type;

bodydef position.set (posi gﬂggg%:gg%£¥g£%§%3

tion) ;

bodydef.angle = angle; ééfgﬁﬁ%ggna fixture
fixdef =

// Allocate the body Fix tureDe??v;

bodv] = fixdef.density = density;
world.createBody (bodydef)

°
14

éé %EE%Gh the two shapes

// Another? fixdef.shape = shapel;
Egg%g$f .position. set(p081b mflﬁgg{% xde%?dyl criate?i
0X game e51gn1n1 lative

at corne 11 university
(]

body2 = fixdef.shape = sha

Observations on Fixture Parameters

® Density can be anything non-zero
® The higher the density the higher the mass
® Heavier objects are harder to move

® Friction should be within 0 to 1
® Can be larger, but effects are unpredictable
® Affects everything, even manual velocity control

® Restitution should be within 0 to 1

® A value of 0 means no bounciness at all
® Unpredictable with manual velocity control

the . e e e
amedesigninitiative
2 5 b0X2d g §c0rnell university

e —

A Word on Units

® Size is not In pixels

® 1 box2d unit = 1 meter
: 1.5 60
® Also 1 density = 1 kg/m? .
_ y_ J b2d units< pixels
® Drawing scale inLab 4
® This Is rescalable
® Couldsay 1unit=10m
® But must be consistent
60

® box2d likesunitsnear 1 o4 units<

® Best If objects same size
® Adjust scale so 1 default

26 box2d

Example: Box2D Demo

Shape: Box Controls: Force

Density: Friction: 0.1 Restitution: O

the . o ey g
gamedesigninitiative
at i

cornell university

Example: Box2D Demo

Shape: Box Controls: Force

Controls:

® 1 or 2 to change density
® 3or 4 to change friction

® 5 or 6 to change restitution

® 7 or 8to change shape

Friction: 0.1 Restitution: O

28 box2d g‘amedesia%ninitiatiye

cornell university

How Do We Find the Shape?

® Do not try to learn boundary
® Image recognition is hard
® Hull will have many sides

® Have artists draw the shape

® Cover shape with triangles
® But can ignore interiors
e Keep # sides small!

® Store shape in another file
® Do not ruin the art!
® Need coordinates as data

29 box2d tgﬂg?amedesigminitiz'ati\‘fe

aaaaaaa 11 university

Data-Driven Design

character. jpg

character.shape

30

»

box2d

120,72
130, 4
125,50
150, 65
160,100
150,110
125,80
140,200
130,200
120,110

the . e el .
gamedeSIgnmltlatlve
aaaaaaa 11 university

Custom Collisions:
ContactlListeners

® Special listener attached to world object
® Reacts to any two fixtures that collide
® Allow you to override collision behavior
® Or you can augment collision behavior

® Two primary methods in interface
® beginContact: When objects first collide
® endContact: When objects no longer collide

® Example: Color changing in box2d demo

e —

31 box2d gamedesigninitiative

lllllllllllllllll

Collision i1s About Fixtures!

|

® Capsule obstacle is two circles and rectangle
® Allows smooth motion while walking
® [eet do not get hung up on surfaces

® But may register multiple collisions!

(R —

32 box2d tgﬂg?amedesigminitiz'ati\‘fe

ttttttttttttttttttt

Aside: What I1s an Obstacle?

® GDIAC extensions include the Obstacle
class

® Combine body and fixture into one class

® Defined as shapes: Box, Wheel, Polygon,
Capsule

® Designed to make collisions easier

® Each fixture has an associated user data object
® Used to define the source of the collision
® QObstacles assign themselves as this source

Essentially box2d on sstraining wheels”™ fmeaesgnnarie

Collision Filtering

34

FixtureDef has a Filter attribute

® categoryBits: Defines what can collide with it
® maskBits: Defines what it can collide with

® groupIndex: Collision group (overrides bits)

Example:

® Fixture A category x001, Fixture B category x010
® Mask x101 or x001 only collides with A

® Mask x011 collides with both A and B

e —

box2d tggeamedesiglninitia’ciye

lllllllllllllllll

Collision Filtering

35

FixtureDef has a Filter attribute

® categoryBits: Defines what can collide with it
® maskBits: Defines what it can collide with

® groupIndex: Collision group (overrides bits)

Example:

® [Fixture A cateqorv —oog 010

|
Filtering means is never detected!

® _-..M\JLIII_\dIIUB

e —

the . ETEIT
box2d gamedesigninitiative
at cornell university

How about Sort-of-Filtering?

® \Want a non-sensor object where
® \\e always detect the collision
® But sometimes ignore the restitution

® Method beginContact hasa Contact
parameter
® Manages the physics while it resolves collision

® Can call the method
contact.i1sEnabled(false)

® Turns off collision; endContact Is never called

e —

® See tutorials for “anatomy of a collision”

36 box2d amede51gmn1t1at1ve

® https://www.iforce2d.net/b2dtut /coxri™

Recall: Swept Shapes

® False positives happen if:
® Two objects are moving
® Swept shapes intersect at
different intersection times
¢ What if only one moving?

® Swept intersects stationary
® S0 no false positives

® Change reference frames
® Keep one shape still
® Move other in new coords

37 box2d

Blue Frame

the . P .
gamedeSIgnmltlatlve
aaaaaaa 11 university

Recall: Swept Shapes

38

False positives happen if:

® Two objects are moving Blue Frame
® Swept shapes intersect at [
different intersection times ,

What if onp

® Sweptin

How «Bullets” are handled

® S0 no false positives

Change reference frames I

Expensive! |

¢ S

box2d tggeameclesiglninitir;vciye

lllllllllllllllll

More Collisions: RayCasting

® Method rayCast In
world

® Give It start, end of ray

® Alsoa
RayCastCallback

® Executed when call step

® |nvoked on all collisions
® Not just the first on
® Does not return in order!
® This is for optimization

® Sight-cones =m

the . . .- .
amedesigninitiative
3 9 bOXZd g § cornell university

The RayCastCallback Interface

float reportRayFixture (Fixture
fixture, // Fixture found

Vector?2 point, // Collision point

o 17 2 : |
COLL 1L o LUl 110OLI1IIaLl

Yecotor?2 ITOIIT, //
® Fraction is how far along ray (0 = start, 1 = end)

£ 1% Eirst eallistanigene with lowest fragtioht- i on of ray
® But be prepared for larger fractions first)

® Return value Is optimization to limit search
® |gnores collisions with fraction later than return

40 boxd B e

The RayCastCallback Interface

float reportRayFixture (Fixture
Fixture found

| Allowed fraction

for future matches |i // Collision point

-7

VectorZz ITOIIT, // CottrsTormrTrormat
® Fraction is how far along ray (0 = start, 1 = end)

£ 1% Eirst eallistanigene with lowest fragtioht- i on of ray
® But be prepared for larger fractions first)

® Return value Is optimization to limit search
® [gnores collisions with fraction later than return

the . e el .
gamede51gn1mt1atlve
at cornell uni i

4 1 b0X2d ell university

AABB Queries

® Bounding Box queries

® Find all fixtures in box
® Must be axis aligned
® Rotation not allowed

® Similar to raycasting
® Provide callback listener
® Call step method in world
® Prepare for many matches

® Application: selection
® See Ragdoll Demo

the . o ey g
gamedesigninitiative
at cornell university

Some Words on Joints

® Joints connect bodies
® Anchors can be offset body Rigid Body

® Coordinates relative to body Anchor

® Are affected by fixtures

® Fixtures prevent collisions (fIJOi'rE)tI)
exible
® | imit relative movement
e Must control with forces Body -
nchor
® Manual velocity might
violate constraints Rigid

® Use force or impulse

43 box2d tg%?amedesigminitiz'ati\‘fe

aaaaaaa 11 university

The Distance Joint

® Extremely common joint

Separates by a fixed amount
Good for ropes/grappling

® Can be hard or soft

Hard: Strong but very brittle
Soft: Stretchy but very weak

® Softness set in the joint def

44

Damping, frequency values
Turns the joint into a spring
Damping: Use <1 to soften
Frequency: Spring oscillation

box2d

Hard Dist

~
~
———————

ance

-~————’

the . e e e
gamedesigninitiative
at cornell university

The Distance Joint

® Extremely common joint Hard Distance
® Separates by a fixed amount
® Good for ropes/grappling

\

-

-~—_——’

® Can be hard or soft

Older versions of box2d have a rope joint.
M This is deprecated in favor of soft distances.

A AR L Y e e

® Turns the joint into a spring
® Damping: Use <1 to soften
® Frequency: Spring oscillation

the . e .
amedesigninitiative
45 b0X2d g a%cornell university

ersity

Other Joint Types

Revolute Weld
A A
® Joint binds at one point ® Joint binds at one point
® Both translate together ® Both translate together
® But rotate independently ® Both rotate together

46 box2d tgh?nnedesigminitiz'atiye

lllllllllllllllllll

Other Joint Types

Prismatic

Pulley

® Joint binds with a “track”™
® Both rotate together

® But translate along track

47

box2d

® Joint binds through portals
® Pulling one raises the other

® Distance w/ “teleportation”

lllllllllllllllllll

Making a Rope: The Simple Way

48

Rectangular planks connected
by revolute joints at each step

Bridge in Lab 4

box2d tgﬂg?amedesigminitiz'ati\‘fe

lllllllllllllllllll

(R —

Making a Rope: The Better Way

49

Web of springy distance joints
with revolute joints at the end

Summary

® pox2d support motion and collisions

® Rody class provides the motion
® Fixture, Shape classes are for collisions

® Multiple ways to control a physics object
® Can apply forces or manually control velocity
® Joint constraints work best with forces

® Collisions are managed by callback functions

® [nvoked once you call the world step method
® Collisions are processed per fixture, not per body

lllllllllllllllllll y

50 box2d gamedesigninitiative

	Slide 1: box2d Physics
	Slide 2: Physics in Games
	Slide 3: Physics in Games
	Slide 4: Body in box2d
	Slide 5: Body in box2d
	Slide 6: Body in box2d
	Slide 7: Forces vs. Impulses
	Slide 8: Forces vs. Impulses
	Slide 9: Force and Acceleration
	Slide 10: Force and Acceleration
	Slide 11: Four Ways to Move a Dynamic Body
	Slide 12: Four Ways to Move a Dynamic Body
	Slide 13: Example: box2d Demo
	Slide 14: Example: box2d Demo
	Slide 15: Four Ways to Move a Dynamic Body
	Slide 16: Basic Structure of a Update Loop
	Slide 17: Basic Structure of a Update Loop
	Slide 18: Basic Structure of a Update Loop
	Slide 19: Collision Objects in box2d
	Slide 20: Making a box2d Physics Object
	Slide 21: Making a box2d Physics Object
	Slide 22: Making a box2d Physics Object
	Slide 23: Making a box2d Physics Object
	Slide 24: Making a box2d Physics Object
	Slide 25: Observations on Fixture Parameters
	Slide 26: A Word on Units
	Slide 27: Example: Box2D Demo
	Slide 28: Example: Box2D Demo
	Slide 29: How Do We Find the Shape?
	Slide 30: Data-Driven Design
	Slide 31: Custom Collisions: ContactListeners
	Slide 32: Collision is About Fixtures!
	Slide 33: Aside: What is an Obstacle?
	Slide 34: Collision Filtering
	Slide 35: Collision Filtering
	Slide 36: How about Sort-of-Filtering?
	Slide 37: Recall: Swept Shapes
	Slide 38: Recall: Swept Shapes
	Slide 39: More Collisions: RayCasting
	Slide 40: The RayCastCallback Interface
	Slide 41: The RayCastCallback Interface
	Slide 42: AABB Queries
	Slide 43: Some Words on Joints
	Slide 44: The Distance Joint
	Slide 45: The Distance Joint
	Slide 46: Other Joint Types
	Slide 47: Other Joint Types
	Slide 48: Making a Rope: The Simple Way
	Slide 49: Making a Rope: The Better Way
	Slide 50: Summary

