
gamedesigninitiative
at cornell university

the

box2d Physics

Lecture 18

gamedesigninitiative
at cornell university

the

Physics in Games

 Moving objects about the screen

 Kinematics: Motion ignoring external forces

(Only consider position, velocity, acceleration)

 Dynamics: The effect of forces on the screen

 Collisions between objects

 Collision Detection: Did a collision occur?

 Collision Resolution: What do we do?

box2d2

gamedesigninitiative
at cornell university

the

Physics in Games

 Moving objects about the screen

 Kinematics: Motion ignoring external forces

(Only consider position, velocity, acceleration)

 Dynamics: The effect of forces on the screen

 Collisions between objects

 Collision Detection: Did a collision occur?

 Collision Resolution: What do we do?

box2d3

gamedesigninitiative
at cornell university

the

 Represents a single point

 Center of the object’s mass

 Object must move as unit

 Properties in class Body

 Position

 Linear Velocity

 Angular Velocity

 Body Type

 There are 3 body types

 Static: Does not move

 Kinematic: Moves w/o force

 Dynamic: Obeys forces

box2d4

Body in box2d

Body

gamedesigninitiative
at cornell university

the

 Represents a single point

 Center of the object’s mass

 Object must move as unit

 Properties in class Body

 Position

 Linear Velocity

 Angular Velocity

 Body Type

 There are 3 body types

 Static: Does not move

 Kinematic: Moves w/o force

 Dynamic: Obeys forces

box2d5

Body in box2d

Linear

Velocity

Position

Angular

Velocity

gamedesigninitiative
at cornell university

the

 Represents a single point

 Center of the object’s mass

 Object must move as unit

 Properties in class Body

 Position

 Linear Velocity

 Angular Velocity

 Body Type

 There are 3 body types

 Static: Does not move

 Kinematic: Moves w/o force

 Dynamic: Obeys forces

 Kinematic is rarely useful

 Limited collision detection

 Only collides w/ dynamics

 Does not bounce or react

 Application: Bullets

 Light, fast-moving objects

 Should not bounce

box2d6

Body in box2d

Looks like

last lecture

gamedesigninitiative
at cornell university

the

Forces

 Instantaneous push

 To be applied over time

 Gradually accelerates

 Momentum if sustained

box2d7

Forces vs. Impulses

Impulses

 Push with duration

 To be applied in one frame

 Quickly accelerates

 Immediate momentum

Impulse
Impulse = Force x Time

gamedesigninitiative
at cornell university

the

Forces

 Instantaneous push

 To be applied over time

 Gradually accelerates

 Momentum if sustained

box2d8

Forces vs. Impulses

Impulses

 Push with duration

 To be applied in one frame

 Quickly accelerates

 Immediate momentum

Impulse
Impulse = Force x 1 Sec

in Box2D

gamedesigninitiative
at cornell university

the

Force and Acceleration

 What do we need to compute motion?

 p = vt = v0t + ½a(t)2 = v0t + ½(F/m)(t)2

 So depends on Force, current velocity and mass

 Where does that mass come from?

 Class Body has a getter, but no setter!

 It comes from the Fixture class

 Fixture gives volume to body

 Will revisit this later with collisions

box2d9

gamedesigninitiative
at cornell university

the

Force and Acceleration

 What do we need to compute motion?

 p = vt = v0t + ½a(t)2 = v0t + ½(F/m)(t)2

 So depends on Force, current velocity and mass

 Where does that mass come from?

 Class Body has a getter, but no setter!

 It comes from the Fixture class

 Fixture gives volume to body

 Will revisit this later with collisions

box2d10

gamedesigninitiative
at cornell university

the

 Forces

 applyForce (linear)

 applyTorque

(angular)

 Impulses

 applyLinearImpulse

 applyAngularImpuls

e

 Velocity

 setLinearVelocity

 setAngularVelocity

 Translation

 setTransform
box2d11

Four Ways to Move a Dynamic Body

Force
Torque

gamedesigninitiative
at cornell university

the

 Forces

 applyForce (linear)

 applyTorque

(angular)

 Impulses

 applyLinearImpulse

 applyAngularImpuls

e

 Velocity

 setLinearVelocity

 setAngularVelocity

 Translation

 setTransform

 Great for joints, complex shapes

 Laggy response to user input

 A bit hard to control

 Great for joints, complex shapes

 Good response to user input

 Extremely hard to control

 Bad for joints, complex shapes

 Excellent response to user input

 Very easy to control

 Completely ignores physics!

 Very easy to control

box2d12

Four Ways to Move a Dynamic Body

gamedesigninitiative
at cornell university

the

Example: box2d Demo

box2d13

gamedesigninitiative
at cornell university

the

Example: box2d Demo

box2d14

Controls:

 WASD for linear force

 Left-right arrows to rotate

 9 or 0 to change controls

gamedesigninitiative
at cornell university

the

 Forces

 applyForce (linear)

 applyTorque

(angular)

 Impulses

 applyLinearImpulse

 applyAngularImpuls

e

 Velocity

 setLinearVelocity

 setAngularVelocity

 Translation

 setTransform
box2d15

Four Ways to Move a Dynamic Body

Must Cap Velocity

gamedesigninitiative
at cornell university

the

Basic Structure of a Update Loop

public void update(float dt) {

 // Apply movement to relevant bodies

 if (body above or equal to max velocity) {

 body.setLinearVelocity(maximum
velocity);

 } else {

 body.applyForce(force)

 body.applyTorque(torque)

 }

 // Use physics engine to update positions

world.step(dt,vel_iterations,pos_iterations);

}

box2d16

gamedesigninitiative
at cornell university

the

Basic Structure of a Update Loop

public void update(float dt) {

 // Apply movement to relevant bodies

 if (body above or equal to max velocity) {

 body.setLinearVelocity(maximum
velocity);

 } else {

 body.applyForce(force)

 body.applyTorque(torque)

 }

 // Use physics engine to update positions

world.step(dt,vel_iterations,pos_iterations);

}

box2d17

Multiple times to

improve accuracy

gamedesigninitiative
at cornell university

the

Basic Structure of a Update Loop

public void update(float dt) {

 // Apply movement to relevant bodies

 if (body above or equal to max velocity) {

 body.setLinearVelocity(maximum
velocity);

 } else {

 body.applyForce(force)

 body.applyTorque(torque)

 }

 // Use physics engine to update positions

world.step(dt,vel_iterations,pos_iterations);

}

box2d18

Multiple times to

improve accuracy

Only before

first iteration!

gamedesigninitiative
at cornell university

the

Shape

 Stores the object geometry

 Boxes, circles or polygons

 Must be convex!

 Has own coordinate space

 Associated body is origin

 Unaffected if body moved

 Cannot be resized later

 Also stores object density

 Mass is area x density

box2d19

Collision Objects in box2d

Fixture

 Attaches a shape to a body

 Fixture has only one body

 Bodies have many fixtures

 Cannot change the shape

 Must destroy old fixture

 Must make a new fixture

 Has other properties

 Friction: stickiness

 Restitution: bounciness

gamedesigninitiative
at cornell university

the

// Create a body
definition

// (this can be reused)

bodydef = new BodyDef();

bodydef.type = type;

bodydef.position.set(posi
tion);

bodydef.angle = angle;

// Allocate the body

body1 =
world.createBody(bodydef)
;

// Another?

bodydef.position.set(posi
tion2);

body2 =
world.createBody(bodydef)
;

box2d20

Making a box2d Physics Object

gamedesigninitiative
at cornell university

the

// Create a body
definition

// (this can be reused)

bodydef = new BodyDef();

bodydef.type = type;

bodydef.position.set(posi
tion);

bodydef.angle = angle;

// Allocate the body

body1 =
world.createBody(bodydef)
;

// Another?

bodydef.position.set(posi
tion2);

body2 =
world.createBody(bodydef)
;

box2d21

Making a box2d Physics Object

Optimized Allocation

Normal Allocation

gamedesigninitiative
at cornell university

the

// Create two triangles
as shapes

shape1 = new
PolygonShape().;

shape2 = new
PolygonShape();

shape1.set(verts1);
shape2.set(verts2);

// Create a fixture
definition

fixdef = new
FixtureDef();

fixdef.density = density;

// Attach the two shapes
to body

fixdef.shape = shape1;

fixture1 = body1.createFi
xture(fixdef);

fixdef.shape = shape2;

fixture2 = body1.createFi

box2d22

Making a box2d Physics Object

gamedesigninitiative
at cornell university

the

// Create two triangles
as shapes

shape1 = new
PolygonShape().;

shape2 = new
PolygonShape();

shape1.set(verts1);
shape2.set(verts2);

// Create a fixture
definition

fixdef = new
FixtureDef();

fixdef.density = density;

// Attach the two shapes
to body

fixdef.shape = shape1;

fixture1 = body1.createFi
xture(fixdef);

fixdef.shape = shape2;

fixture2 = body1.createFi

box2d23

Making a box2d Physics Object

Other shapes possible

Also set friction and

restitution parameters

Reason for separating
Fixture & Body classes

gamedesigninitiative
at cornell university

the

// Create a body
definition

// (this can be reused)

bodydef = new BodyDef();

bodydef.type = type;

bodydef.position.set(posi
tion);

bodydef.angle = angle;

// Allocate the body

body1 =
world.createBody(bodydef)
;

// Another?

bodydef.position.set(posi
tion2);

body2 =
world.createBody(bodydef)
;

// Create two triangles
as shapes

shape1 = new
PolygonShape().;

shape2 = new
PolygonShape();

shape1.set(verts1);
shape2.set(verts2);

// Create a fixture
definition

fixdef = new
FixtureDef();

fixdef.density = density;

// Attach the two shapes
to body

fixdef.shape = shape1;

fixture1 = body1.createFi
xture(fixdef);

fixdef.shape = shape2;

fixture2 = body1.createFi

box2d24

Making a box2d Physics Object

gamedesigninitiative
at cornell university

the

Observations on Fixture Parameters

 Density can be anything non-zero

 The higher the density the higher the mass

 Heavier objects are harder to move

 Friction should be within 0 to 1

 Can be larger, but effects are unpredictable

 Affects everything, even manual velocity control

 Restitution should be within 0 to 1

 A value of 0 means no bounciness at all

 Unpredictable with manual velocity control
box2d25

gamedesigninitiative
at cornell university

the

 Size is not in pixels

 1 box2d unit = 1 meter

 Also 1 density = 1 kg/m2

 Drawing scale in Lab 4

 This is rescalable

 Could say 1 unit = 10 m

 But must be consistent

 box2d likes units near 1

 Best if objects same size

 Adjust scale so 1 default

box2d26

A Word on Units

60

pixels

1.5

b2d units

60

b2d units

gamedesigninitiative
at cornell university

the

Example: Box2D Demo

box2d27

gamedesigninitiative
at cornell university

the

Example: Box2D Demo

box2d28

Controls:

 1 or 2 to change density

 3 or 4 to change friction

 5 or 6 to change restitution

 7 or 8 to change shape

gamedesigninitiative
at cornell university

the

 Do not try to learn boundary

 Image recognition is hard

 Hull will have many sides

 Have artists draw the shape

 Cover shape with triangles

 But can ignore interiors

 Keep # sides small!

 Store shape in another file

 Do not ruin the art!

 Need coordinates as data

box2d29

How Do We Find the Shape?

gamedesigninitiative
at cornell university

the

character.jpg

box2d30

Data-Driven Design

character.shape

120,2

130,4

125,50

150,65

160,100

150,110

125,80

140,200

130,200

120,110

…

gamedesigninitiative
at cornell university

the

Custom Collisions:
ContactListeners

 Special listener attached to world object

 Reacts to any two fixtures that collide

 Allow you to override collision behavior

 Or you can augment collision behavior

 Two primary methods in interface

 beginContact: When objects first collide

 endContact: When objects no longer collide

 Example: Color changing in box2d demo

box2d31

gamedesigninitiative
at cornell university

the

Collision is About Fixtures!

box2d32

 Capsule obstacle is two circles and rectangle

 Allows smooth motion while walking

 Feet do not get hung up on surfaces

 But may register multiple collisions!

gamedesigninitiative
at cornell university

the

Aside: What is an Obstacle?

 GDIAC extensions include the Obstacle

class

 Combine body and fixture into one class

 Defined as shapes: Box, Wheel, Polygon,

Capsule

 Designed to make collisions easier

 Each fixture has an associated user data object

 Used to define the source of the collision

 Obstacles assign themselves as this source

 Essentially box2d on “training wheels”box2d33

gamedesigninitiative
at cornell university

the

Collision Filtering

 FixtureDef has a Filter attribute

 categoryBits: Defines what can collide with it

 maskBits: Defines what it can collide with

 groupIndex: Collision group (overrides bits)

 Example:

 Fixture A category x001, Fixture B category x010

 Mask x101 or x001 only collides with A

 Mask x011 collides with both A and B

box2d34

gamedesigninitiative
at cornell university

the

Collision Filtering

 FixtureDef has a Filter attribute

 categoryBits: Defines what can collide with it

 maskBits: Defines what it can collide with

 groupIndex: Collision group (overrides bits)

 Example:

 Fixture A category x001, Fixture B category x010

 Mask x101 or x001 only collides with A

 Mask x011 collides with both A and B

box2d35

gamedesigninitiative
at cornell university

the

How about Sort-of-Filtering?

 Want a non-sensor object where

 We always detect the collision

 But sometimes ignore the restitution

 Method beginContact has a Contact

parameter

 Manages the physics while it resolves collision

 Can call the method
contact.isEnabled(false)

 Turns off collision; endContact is never called

 See tutorials for “anatomy of a collision”

 https://www.iforce2d.net/b2dtut/colli

sion-anatomy

box2d36

gamedesigninitiative
at cornell university

the

Red Frame

 False positives happen if:

 Two objects are moving

 Swept shapes intersect at

different intersection times

 What if only one moving?

 Swept intersects stationary

 So no false positives

 Change reference frames

 Keep one shape still

 Move other in new coords

box2d37

Recall: Swept Shapes

Blue Frame

gamedesigninitiative
at cornell university

the

Red Frame

 False positives happen if:

 Two objects are moving

 Swept shapes intersect at

different intersection times

 What if only one moving?

 Swept intersects stationary

 So no false positives

 Change reference frames

 Keep one shape still

 Move other in new coords

box2d38

Recall: Swept Shapes

Blue Frame

Expensive!

gamedesigninitiative
at cornell university

the

 Method rayCast in

world

 Give it start, end of ray

 Also a
RayCastCallback

 Executed when call step

 Invoked on all collisions

 Not just the first on

 Does not return in order!

 This is for optimization

 Sight-cones = many rays
box2d39

More Collisions: RayCasting

gamedesigninitiative
at cornell university

the

The RayCastCallback Interface

float reportRayFixture(Fixture

fixture, // Fixture found

Vector2 point, // Collision point

Vector2 nom, // Collision normal

float fraction // Fraction of ray

)

box2d40

 Fraction is how far along ray (0 = start, 1 = end)

 First collision is one with lowest fraction

 But be prepared for larger fractions first

 Return value is optimization to limit search

 Ignores collisions with fraction later than return

gamedesigninitiative
at cornell university

the

The RayCastCallback Interface

float reportRayFixture(Fixture

fixture, // Fixture found

Vector2 point, // Collision point

Vector2 nom, // Collision normal

float fraction // Fraction of ray

)

box2d41

 Fraction is how far along ray (0 = start, 1 = end)

 First collision is one with lowest fraction

 But be prepared for larger fractions first

 Return value is optimization to limit search

 Ignores collisions with fraction later than return

Allowed fraction

for future matches

gamedesigninitiative
at cornell university

the

 Bounding Box queries

 Find all fixtures in box

 Must be axis aligned

 Rotation not allowed

 Similar to raycasting

 Provide callback listener

 Call step method in world

 Prepare for many matches

 Application: selection

 See Ragdoll Demo

box2d42

AABB Queries

gamedesigninitiative
at cornell university

the

 Joints connect bodies

 Anchors can be offset body

 Coordinates relative to body

 Are affected by fixtures

 Fixtures prevent collisions

 Limit relative movement

 Must control with forces

 Manual velocity might

violate constraints

 Use force or impulse

box2d43

Some Words on Joints

Body

Anchor

Rigid

Rigid

Body

Anchor

Joint

(flexible)

gamedesigninitiative
at cornell university

the

 Extremely common joint

 Separates by a fixed amount

 Good for ropes/grappling

 Can be hard or soft

 Hard: Strong but very brittle

 Soft: Stretchy but very weak

 Softness set in the joint def

 Damping, frequency values

 Turns the joint into a spring

 Damping: Use <1 to soften

 Frequency: Spring oscillation

box2d44

The Distance Joint

Hard Distance

Soft Distance

gamedesigninitiative
at cornell university

the

 Extremely common joint

 Separates by a fixed amount

 Good for ropes/grappling

 Can be hard or soft

 Hard: Strong but very brittle

 Soft: Stretchy but very weak

 Softness set in the joint def

 Damping, frequency values

 Turns the joint into a spring

 Damping: Use <1 to soften

 Frequency: Spring oscillation

box2d45

The Distance Joint

Hard Distance

Soft Distance
Older versions of box2d have a rope joint.

This is deprecated in favor of soft distances.

gamedesigninitiative
at cornell university

the

Revolute

 Joint binds at one point

 Both translate together

 But rotate independently

box2d46

Other Joint Types

Weld

 Joint binds at one point

 Both translate together

 Both rotate together

gamedesigninitiative
at cornell university

the

Prismatic

 Joint binds with a “track”

 Both rotate together

 But translate along track

box2d47

Other Joint Types

Pulley

 Joint binds through portals

 Pulling one raises the other

 Distance w/ “teleportation”

gamedesigninitiative
at cornell university

the

box2d48

Making a Rope: The Simple Way

Bridge in Lab 4

Rectangular planks connected

by revolute joints at each step

gamedesigninitiative
at cornell university

the

box2d49

Making a Rope: The Better Way

Web of springy distance joints

with revolute joints at the end

Keeps rope strong but flexible!

gamedesigninitiative
at cornell university

the

Summary

 box2d support motion and collisions

 Body class provides the motion

 Fixture, Shape classes are for collisions

 Multiple ways to control a physics object

 Can apply forces or manually control velocity

 Joint constraints work best with forces

 Collisions are managed by callback functions

 Invoked once you call the world step method

 Collisions are processed per fixture, not per body

box2d50

	Slide 1: box2d Physics
	Slide 2: Physics in Games
	Slide 3: Physics in Games
	Slide 4: Body in box2d
	Slide 5: Body in box2d
	Slide 6: Body in box2d
	Slide 7: Forces vs. Impulses
	Slide 8: Forces vs. Impulses
	Slide 9: Force and Acceleration
	Slide 10: Force and Acceleration
	Slide 11: Four Ways to Move a Dynamic Body
	Slide 12: Four Ways to Move a Dynamic Body
	Slide 13: Example: box2d Demo
	Slide 14: Example: box2d Demo
	Slide 15: Four Ways to Move a Dynamic Body
	Slide 16: Basic Structure of a Update Loop
	Slide 17: Basic Structure of a Update Loop
	Slide 18: Basic Structure of a Update Loop
	Slide 19: Collision Objects in box2d
	Slide 20: Making a box2d Physics Object
	Slide 21: Making a box2d Physics Object
	Slide 22: Making a box2d Physics Object
	Slide 23: Making a box2d Physics Object
	Slide 24: Making a box2d Physics Object
	Slide 25: Observations on Fixture Parameters
	Slide 26: A Word on Units
	Slide 27: Example: Box2D Demo
	Slide 28: Example: Box2D Demo
	Slide 29: How Do We Find the Shape?
	Slide 30: Data-Driven Design
	Slide 31: Custom Collisions: ContactListeners
	Slide 32: Collision is About Fixtures!
	Slide 33: Aside: What is an Obstacle?
	Slide 34: Collision Filtering
	Slide 35: Collision Filtering
	Slide 36: How about Sort-of-Filtering?
	Slide 37: Recall: Swept Shapes
	Slide 38: Recall: Swept Shapes
	Slide 39: More Collisions: RayCasting
	Slide 40: The RayCastCallback Interface
	Slide 41: The RayCastCallback Interface
	Slide 42: AABB Queries
	Slide 43: Some Words on Joints
	Slide 44: The Distance Joint
	Slide 45: The Distance Joint
	Slide 46: Other Joint Types
	Slide 47: Other Joint Types
	Slide 48: Making a Rope: The Simple Way
	Slide 49: Making a Rope: The Better Way
	Slide 50: Summary

