the

gamedesigninitiative
at cornell university
I
Lecture 18

Box2D Physics

Physics in Games

® Moving objects about the screen

® Kinematics: Motion 1ignoring external forces

(Only consider position, velocity, acceleration)

® Dynamics: The effect of forces on the screen

® Collisions between objects
® (Collision Detection: Did a collision occur?

® (Collision Resolution: What do we do?

[EE— EE——

2 Physics Overview gamedesigninitiative

11111111111111111111

Physics in Games

® Moving objects about the screen

® KinematiCS: MOTiﬂﬂ 107 Aveaam — ') Corces
(¢ Class Body /ation)

® Dyunwancs:1n€ €ttect of forces on the screen

® Collisions between objects

o Collic;n“ LR . 11‘?
e C Class Fixture

3 Physics Overview %famedesigninitiative

at cornell university

Body in Box2D

® Represents a single point

® (Center of the object’s mass
® (Object must move as unit

® Properties 1n class Body
® Position
® Linear Velocity
® Angular Velocity
® Body Type

® There are 3 body types

® Static: Does not move
® Kinematic: Moves w/o force
® Dynamic: Obeys forces

PE—— —
the . P .
P amedesigninitiative
4 C OIIISIOnS g a%cornell university

Body in Box2D

® Represents a single point
® (Center of the object’s mass

. . Linear
® (Object must move as unit Velocity
® Properties 1n class Body Angu@ar
® Position Velocity
® Linear Velocity
® Angular Velocity
® Body Type Position

® There are 3 body types
® Static: Does not move

® Kinematic: Moves w/o force
® Dynamic: Obeys forces

PE—— —
the . P .
P amedesigninitiative
5 C OIIISIOnS g a%cornell university

Body in Box2D

® Represents a single point ® Kinematic is rarely useful

® Center of the object’s mass ® [.imited collision detection

® Object must move as unit ® Only collides w/ dynamics

® Properties in class Body ® Does not bounce or react
o .
P(,)Sltlon _ ® Application: Bullets
Linear Velocity

o

[1 _ : .
® Angular Velocity nght, fast moving objects
o

Body Type ® Should not bounce

® There are 3 body types
® Static: Does not move 2 Looks like }

® Kinematic: Moves w/o force last lecture
® Dynamic: Obeys forces

PE—— —
the . P .
P amedesigninitiative
6 C OIIISIOnS g a%cornell university

Forces vs. Impulses

Forces

Impulses

® [Instantaneous push
® To be applied over time
® (Gradually accelerates

® Momentum if sustained

Impulse = Force x Time

® Push with duration
® To be applied in one frame
® Quickly accelerates

® [mmediate momentum

F(N) /Point of maximum
800 compression
600 A
. Impulse
400 1
2004 Contact Contact
4 begins. ends.
0 — \l . l/ 11— [(MS)
0 20 | 40 60 | 80 100
NP ©.....
Collisions tg;;famedesigninitiative

at cornell university

Forces vs. Impulses

Forces Impulses
® [nstantaneous push ® Push with duration
® To be applied over time ® To be applied in one frame
® Gradually accelerates ® Quickly accelerates
® Momentum if sustained ® [mmediate momentum
2004 < compresson
600
Impulse = Force x 1 Sec 400- Impulse]
200- Contact Contact
in Box2D 0- l?egi.ns\'l —— .?]TJS.. — t (ms)
0 20 40 60 80 100

Duration At

8 Collisions tg;;famedesigninitiative

at cornell university

Force and Acceleration

® What do we need to compute motion?
® Ap = VAL = VoAt + Yaa(AY)? = vyAt + YVa(F/m)(AY)?

® So depends on Force, current velocity and mass

® Where does that mass come from?
® (Class Body has a getter, but no setter!
® [t comes from the Fixture class A

® Fixture gives volume to body

® Will revisit this later with collisions

[EE— EE——

the . P .

P amedesigninitiative

9 COIIISIOHS g a% 11111 ell university
- ==

Force and Acceleration

® What do we need to compute motion?
® Ap = VAL = VoAt + Yaa(AY)? = vyAt + YVa(F/m)(AY)?

® So depends on Force, current velocity and mass

® Where does that mass come from?

® (Class Body has a getter, but no setter!
® [t comes from the Fixture class

® Fixture gives volume to body

® Will revisit this later with collisions

the . e el .
e amedesigninitiative
1 0 COIIISIOHS g a%cornell university

- =

Four Ways to Move a Dynamic Body

® Forces
® applyForce (linear)
® applyTorque (angular)

® Impulses
® agpplyLinearImpulse
® applyAngularlmpulse

® Velocity
® gsetLinearVelocity
® setAngularVelocity

® Translation
® gsetTransform

11 Collisions

Torque

Force

the . e ey g
gamedesigninitiative

at cornell university

Four Ways to Move a Dynamic Body

12

Forces
® applyForce
® applyTorque (angular)

(linear)

Impulses
® agpplyLinearImpulse
® applyAngularlmpulse

Velocity
® gsetLinearVelocity
® setAngularVelocity

Translation
® gsetTransform

Great for joints, complex shapes
Laggy response to user input
A bit hard to control

Great for joints, complex shapes
Good response to user input
Extremely hard to control

Bad for joints, complex shapes
Excellent response to user input
Very easy to control

Completely ignores physics!
Very easy to control

TN
o
>
o
—
TN
o
>1e0
o
—
TN
o
>1e0
o
—
TN
o
>
o
—
Collisions

the . o ege g
gamedesigninitiative
at cornell university

Example: Box2D Demo

Shape: Box Controls: Force

Friction: 0.1 Restitution: O

e —
he e
Collisions gamedesigninitiative

at cornell university

Example: Box2D Demo

Shape: Box Controls: Force

Controls:
® WASD for linear force
® [Left-right arrows to rotate

® 9 or 0 to change controls

Friction: 0.1 Restitution: O

the . e el .
fQd amedesigninitiative
14 Collisions g g /

cornell university

Four Ways to Move a Dynamic Body

® Forces)

® applyForce (linear)
® applyTorque (angular)
>~ Must Cap Velocity

® Impulses
® applyLinearImpulse
® applyAngularlmpulse

—

® Velocity
® gsetLinearVelocity
® setAngularVelocity

® Translation
® gsetTransform

the . e el .
e amedesigninitiative
1 5 COIIISlonS g a%cornell university

Basic Structure of a Update Loop

public void update(float dt) {

// Apply movement to relevant bodies

if (body above or equal to max velocity) {
body.setLinearVelocity(maximum velocity);

} else {
body.applyForce(force)
body.applyTorque(torque)

}

// Use physics engine to update positions

world.step(dt,vel_iterations,pos_iterations);,

the . P .
P amedesigninitiative
1 6 COIIISIOHS g §cornell university

Basic Structure of a Update Loop

public void update(float dt) {

// Apply movement to relevant bodies

if (body above or equal to max velocity) {
body.setLinearVelocity(maximum velocity);

} else {
body.applyForce(force)
body.applyTorque(torque)

}

// Use physics engine to update positions

world.step(dt,vel_iterations,pos_iterations);

} Multiple times to
Improve accuracy

the . P .
P amedesigninitiative
1 7 COIIISIOHS g §cornell university

Basic Structure of a Update Loop

public void update(float dt) {
// Apply movement to relevant bodies
if (body above or equal to max velocity) {
body.setLinearVelocity(maximum velocity);

} else { Only before
body.applyForce(force) first iteration!

body.applyTorque(torque)
}

// Use physics engine to update positions

world.step(dt,vel_iterations,pos_iterations);

} Multiple times to
Improve accuracy

the . P .
P amedesigninitiative
1 8 COIIISIOHS g a%cornell university

Collision Objects in Box 2D

Shape Fixture
® Stores the object geometry ® Attaches a shape to a body
® Boxes, circles or polygons ® Fixture has only one body
® Must be convex! ® Bodies have many fixtures
® Has own coordinate space ® (Cannot change the shape
® Associated body is origin ® Must destroy old fixture
® Unaffected if body moved ® Must make a new fixture

® (Cannot be resized later e Has other propertics

® Also stores object density ® Friction: stickiness

® Mass is area x density ® Restitution: bounciness

PE—— —
the . P .
P amedesigninitiative
1 9 COIIISIOHS g a%cornell university

Making a Box2D Physics Object

// Create a body definition

// (this can be reused)
bodydef = new BodyDef();
bodydef.type = type;
bodydef.position.set(position);
bodydef.angle = angle;

// Allocate the body
bodyl = world.createBody(bodydef);

// Another?
bodydef.position.set(position?);
body? = world.createBody(bodydef);

20 Collisions

the . o ege g
gamedesigninitiative
at cornell university

Making a Box2D Physics Object

// Create a body definition

// (this can be reused) ~
bodydef = new BodyDef();

bodydef.type = type;

bodydef.position.set(position); > Normal Allocation

bodydef.angle = angle;

// Allocate the body

_
bodyl = world.createBody(bodydef);)

// Another? >~ Optimized Allocation
bodydef.position.set(position?);

body? = world.createBody(bodydef); S

he e ey -
21 Collisions gamedesigninitiative
at cornell university

Making a Box2D Physics Object

// Create two triangles as shapes
shapel = new PolygonShape().;

shape?d = new PolygonShape();
shapel.set(vertsl); shaped.set(verts);

// Create a fixture definition
fixdef = new FixtureDef();
fixdef.density = density;

// Attach the two shapes to body
fixdef.shape = shapel;

fixturel = bodyl.createFixture(fixdef);
fixdef.shape = shapeZ;

fixture? = bodyl.createFixture(fixdef);

PE—— —
the . P .
P amedesigninitiative
C OIIISIOnS g §cornell university

Making a Box2D Physics Object

Other shapes possible <

7~ // Create two triangles as shapes
shapel = new PolygonShape().;
shape?d = new PolygonShape();

Also set friction and <
restitution parameters

N shapel.set(vertsl); shaped.set(verts);

// Create a fixture definition
fixdef = new FixtureDef();
fixdef.density = density;

Reason for separating <
Fixture & Body classes

N—

7~ // Attach the two shapes to body
fixdef.shape = shapel;

fixturel = bodyl.createFixture(fixdef);
fixdef.shape = shapeZ;

the . P .
P amedesigninitiative
2 3 COIIISIOHS g a%cornell uni i

_ fixture’ = bodyl.createFixture(fixdef);

versity

Making a Box2D Physics Object

// Create a body definition

// (this can be reused)
bodydef = new BodyDef();
bodydef.type = type;
bodydef.position.set(position);
bodydef.angle = angle;

// Allocate the body
bodyl = world.createBody(bodydef);

// Another?
bodydef.position.set(position?);
body? = world.createBody(bodydef);

24

the . P .
P amedesigninitiative
Collisions g gruinitiativ

// Create two triangles as shapes
shapel = new PolygonShape().;

shape?d = new PolygonShape();
shapel.set(vertsl); shaped.set(verts?);

// Create a fixture definition
fixdef = new FixtureDef();
fixdef.density = density;

// Attach the two shapes to body
fixdef.shape = shapel;

fixturel = bodyl.createFixture(fixdef);
fixdef.shape = shapeZ;

fixture? = bodyl.createFixture(fixdef);

iversity

Observations on Fixture Parameters

® Density can be anything non-zero
® The higher the density the higher the mass
® Heavier objects are harder to move

® Kriction should be within 0 to 1

® Can be larger, but effects are unpredictable
® Affects everything, even manual velocity control

® Restitution should be within 0 to 1

® A value of 0 means no bounciness at all
® Unpredictable with manual velocity control

[EE— EE——

25 Collisions tg;rmelmedesignini’cir;l’ciye

11111111111111111111

A Word on Units

® Size 1s not 1n pixels
® | Box2D unit = 1 meter
® Also 1 density = 1 kg/m?
® Drawing scale in Lab 4

60
pixels

1.5
B2d units.<

® This 1s rescalable
® Could say 1 unit= 10 m

® But must be consistent

| | 60
® Box2d likes units near 1 B2d units<

® Best if objects same size
® Adjust scale so 1 default

the . e el .
e amedesigninitiative
2 6 C OIIISIOnS g a%cornell university

Example: Box2D Demo

Shape: Box Controls: Force

Friction: 0.1 Restitution: O

e —
he e
Collisions gamedesigninitiative

at cornell university

Example: Box2D Demo

Shape: Box Controls: Force

® | or 2 to change density
® 3 or 4 to change friction
® 5 or 6 to change restitution

® 7 or 8 to change shape

Friction: 0.1 Restitution: O

the . e el .
fQd amedesigninitiative
28 Collisions g g /

cornell university

How Do We Find the Shape?

® Do not try to /earn boundary
® Image recognition is hard

® Hull will have many sides

® Have artists draw the shape

® (Cover shape with triangles
® But can ignore interiors

® Keep # sides small!

® Store shape 1n another file

® Do not ruin the art!

® Need coordinates as data

the . e el .
e amedesigninitiative
2 9 COIIISIOHS g §cornell university

Data-Driven Design

character.jpg

character.shape

30

Collisions

120,2
10,4
125,50
150,65
160,100
150,110
125,80
140,200
130,200
120,110

the . o e g
gamedesigninitiative
at cornell university

Custom Collisions: ContactListeners

® Special listener attached to world object
® Reacts to any two fixtures that collide
® Allow you to override collision behavior

® Or you can augment collision behavior

® Two primary methods 1n interface
® beginContact: When objects first collide
® endContact: When objects no longer collide

® Example: Color changing in Box2D demo

[EE— EE——

31 Collisions tg;rmelmedesignini’cir;l’ciye

11111111111111111111

Collision is About Fixtures!

® Capsule obstacle 1s two circles and rectangle
® Allows smooth motion while walking
® Feet do not get hung up on surfaces

® But may register multiple collisions!

[EE— —

the . « ege g
= amedesigninitiative
3 2 COIIISIOHS g a%cornell university

- ===

Collision Filtering

® FixtureDef has a Filter attribute

® categoryBits: Defines what can collide with it
® maskBits: Defines what it can collide with

® grouplndex: Collision group (overrides bits)

® Example:

33

® Fixture A category x001, Fixture B category x010
® Mask x101 or x001 only collides with A
® Mask x011 collides with both A and B

[EE— EE——

the . P .
P amedesigninitiative
C OIIISIOnS g a%cornell university

- =

Collision Filtering

® FixtureDef has a Filter attribute

® categoryBits: Defines what can collide with it
® maskBits: Defines what 1t can collide with

® grouplndex: Collision group (overrides bits)

® Example:

® Fixture A categorv ¥OO 1 Soey

—< uil [)\ Clllu tj

[EE— EE——

the . P .

P amedesigninitiative

3 4 COIIISIOHS g § 11111 ell university
- ==

How about Sort-of-Filtering?

® Want a non-sensor object where
® We always detect the collision
® But sometimes ignore the restitution

® Method beginContact has a Contact parameter

® Manages the physics while 1t resolves collision
® (Can call the method contact.isEnabled(false)
® Turns off collision; endContact 1s never called

® See tutorials for “anatomy of a collision”
® https://www.iforcedd.net/b2dtut/collision-anatomy

he e ey -
35 Collisions gamedesigninitiative
at cornell university

- =

Recall: Tunneling

® Small objects tunnel more easily

® Fast-moving objects tunnel more easily

36 Collisions tgh%‘m

Possible Solutions to Tunnelling

® Minimum size requirement?
® Fast objects still tunnel

® Maximum speed limit?
® Speed limit 1s a function of object size
® So small & fast objects (bullets) not allowed

® Smaller time step?
® Essentially the same as a speed limit

® All of these solutions are inadequate

[EE— EE——

37 Collisions tg;rmelmedesignini’cir;l’ciye

11111111111111111111

Swept Shapes

® Bounds contain motion
® “Cylinder” w/ shape at ends
® Object always in bounds

® (Convex if shape 1s convex

® New collision checking
® Put shapes at start and end
® (Create swept shape for pair

® (Check for collisions

® (Can have false positives

® Swept shape ignores time

38 Collisions

the . e ey g
gamedesigninitiative
at i

cornell university

Swept Shapes

® Bounds contain motion
® “Cylinder” w/ shape at ends

® Object always in bounds

® Convex if shape 1s convex

® New collision checking
® Put shapes at start and end

® (reate swept shape for pair

® (Check for collisions

® (Can have false positives

® Swept shape ignores time

the . e ee e
39 Collisions gamedesigninitiative
at cornell university

Swept Shapes & Relative Coordinates

® False positives happen if:
® Two objects are moving Inertial Frame

® Swept shapes intersect at
different intersection times

® What if only one moving?
® Swept intersects stationary

® So no false positives

® Change reference frames

® Keep one shape still

® Move other in new coords

the . e el .
e amedesigninitiative
4 0 COIIISlonS g a%cornell university

Swept Shapes & Relative Coordinates

® False positives happen if:
® Two objects are moving Blue Frame

® Swept shapes intersect at
different intersection times

® What if only one moving?
® Swept intersects stationary

® So no false positives

® Change reference frames

® Keep one shape still

® Move other in new coords

the . e el .
e amedesigninitiative
4 1 COIIISlonS g a%cornell university

Swept Shapes & Relative Coordinates

® False positives happen if:

® Two objects are moving Blue Frame

® Swept shapes intersect at I
different intersection times

* What if on)- » ave handled
«Bullets” are na
® Swept in How B

® So no false positives -

® Change reference frames

. .
Expensive!
¢ S

PE—— —
the . P .
P amedesigninitiative
42 C OIIISIOnS g a%cornell university

Rotations Suck

® Relative coordinates no help
® (Cannot use swept shapes

® Actual solution 1s hard!

® But not so bad...
® Angular tunneling looks ok
® Speed limits are feasible

® Do linear approximations

® Many physics systems
never handle this well

43 Collisions

the . e ey g
gamedesigninitiative

at cornell university

More Collisions: RayCasting

® Method rayCast in world

® QGive it start, end of ray
® Also a RayCastCallback
® Executed when call step

® Invoked on all collisions
® Not just the first on
® Does not return in order!

® This 1s for optimization

the . « ege g
iqi amedesigninitiative
44 COIIISlonS g §cornell university

® Sight-cones = many rays

The RayCastCallback Interface

float reportRayFixture(Fixture fixture, // Fixture found
Vector? point, // Collision point
Vector?d nom, // Collision normal
float fraction // Fraction of ray

)

® Fraction 1s how far along ray (0 = start, 1 = end)

® First collision 1s one with lowest fraction
® But be prepared for larger fractions first

® Return value 1s optimization to limit search
® [gnores collisions with fraction later than return

the . P .
P amedesigninitiative
4 5 C OIIISIOnS g §cornell university

The RayCastCallback Interface

float reportRayFixture(Fixture fixture, // Fixture found
Vector? point, // Collision point

Allowed fraction Vector? nom, // Collision normal
for future matches float fraction // Fraction of ray

)

® Fraction 1s how far along ray (0 = start, 1 = end)
® First collision is one with lowest fraction
® But be prepared for larger fractions first

® Return value 1s optimization to limit search
® [gnores collisions with fraction later than return

[EE— —

the . « ege g
= amedesigninitiative
4 6 COIIISIOHS g a%cornell university

- ===

AABB Queries

® Bounding Box queries
® Find all fixtures in box

® Must be axis aligned
® Rotation not allowed

® Similar to raycasting

® Provide callback listener
® (all step method in world

® Prepare for many matches
g ® Application: selection
® See Ragdoll Demo

he e e .
47 Collisions gamedesigninitiative
at cornell university

Some Words on Joints

® Joints connect bodies

® Anchors can be offset body Rigid Body

® (Coordinates relative to body Anchor

® Are affected by fixtures

® Fixtures prevent collisions (ﬂJOi_f];tl)
CX101€
® [imit relative movement
® Must control with forces Body o
ncnor

® Manual velocity might
violate constraints Rigid

® Use force or impulse

the . e el .
e amedesigninitiative
4 8 COIIISIOHS g a%cornell university

Sample Joint Types

Distance Joint

Rope Joint

e

~ -
L S

® Hard constraint
® Strong but very brittle

® Primary chain/rope joint

49

the . e el .
' amedesigninitiative
Collisions g gninitiatly

® Soft constraint
® Stretchy but very weak

® More for reinforcement

iversity

Sample Joint Types

Revolute Weld
A A
® Joint binds at one point ® Joint binds at one point
® Both translate together ® Both translate together
® But rotate independently ® Both rotate together

he e ey -
50 Collisions gamedesigninitiative
at cornell university

Sample Joint Types

Prismatic Pulley

o

® Joint binds with a “track”™ ® Joint binds through portals
® Both rotate together ® Pulling one raises the other
® But translate along track ® Distance w/ “teleportation”

the . e el .
' amedesigninitiative
5 1 COIIISlonS g a%cornell university

Summary

® Box2d support motion and collisions

® Body class provides the motion

® Fixture, Shape classes are for collisions

® Multiple ways to control a physics object
® (Can apply forces or manually control velocity

® Joint constraints work best with forces

® Collisions are managed by callback functions
® Invoked once you call the world step method

® (Collisions are processed per fixture, not per body

52 Collisions tg;rmelmedesignini’cir;l’ciye

11111111111111111111

