Combinational Logic

From lecture, we have seen the design of a 1-bit full adder. Now, let's try to add a carryin bit to the input:

A	В	Cin	Sum	Cout
0	0	0	0	0
0	0	1	1	0
0	1	0	1	0
0	1	1	0	1
1	0	0	1	0
1	0	1	0	1
1	1	0	0	1
1	1	1	1	1

The equations can be derived immediately as:

$$Sum = \underline{a} \underline{b} c + \underline{a} \underline{b} \underline{c} + \underline{a} \underline{b} \underline{c} + \underline{a} \underline{b} \underline{c} + \underline{a} \underline{b} \underline{c}$$

$$Cout = \underline{a} \underline{b} c + \underline{a} \underline{b} c + \underline{a} \underline{b} \underline{c} + \underline{a} \underline{b} \underline{c}$$

To simplify the equations, Karnot Maps should be used:

Sum:

	<u>b</u> <u>c</u>	<u>b</u> c	bс	b <u>с</u>
<u>a</u>	0	1	0	1
a	1	0	1	0

Cout:

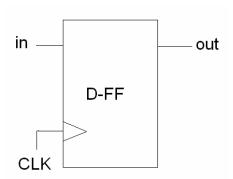
	<u>b</u> <u>c</u>	<u>b</u> c	bс	b <u>с</u>
<u>a</u>	0	0	1	0
а	0	1	1	1

While Sum cannot be reduced further, Cout can be reduced to:

$$Cout = a c + a b + b c$$

Sequential Logic

State holding element: D Flip-flop



On a positive edge of the clock signal, the D Flip-flop passes the input value to the output.

Now, let's implement a 2-bit counter:

Reset	S 1	S 0	S1'	S0'
0	0	0	0	1
0	0	1	1	0
0	1	0	1	1
0	1	1	0	0
1	0	0	0	0
1	0	1	0	0
1	1	0	0	0
1	1	1	0	0

The equations of S0' and S1' can be derived as:

$$S1' = \underbrace{Reset}_{S0} \underbrace{S1}_{S0} + \underbrace{Reset}_{S1} \underbrace{S1}_{S0}$$
$$S0' = \underbrace{Reset}_{S1} \underbrace{S1}_{S0} + \underbrace{Reset}_{S1} \underbrace{S1}_{S0}$$

$$S0' = Reset S1 S0 + Reset S1 S0$$

And here's a gate diagram of the circuit:

